Toto je tzv. shluknutý kurz. Skládá se z několika samostatných předmětů, které sdílejí výukové materiály, úkoly, testy apod. Níže si můžete zobrazit informace o jednotlivých předmětech tvořících tento shluk.

Modelování a simulace dynamických systémů - B3B35MSD

Hlavní kurz
Kredity 4
Semestry zimní
Zakončení zápočet a zkouška
Jazyk výuky čeština
Rozsah výuky 2P+2L
Anotace
Cílem předmětu je naučit (se) vytvářet matematické modely složitých dynamických systémů, a to za účelem návrhu řídicích algoritmů. Budeme chtít umět modelovat pomocí jednotné metodiky realisticky složité dynamické systémy obsahující podsystémy a prvky z různých fyzikálních domén jako jsou elektronika, mechanika, magnetismus, piezoelektřina, hydraulika, pneumatika či termodynamika.

Ukážeme si, že je to právě energie (a výkon), která je univerzálním platidlem napříč fyzikálními doménami, a tudíž námi prozkoumávané modelovací metody budou založeny na sledování toku energie (výkonu) mezi podsystémy a prvky. Představíme si tři skupiny energeticky založených modelovacích metod, a to sice velmi intuitivní grafickou metodu výkonových vazebních grafů, dále pak analytickou metodu založenou na Eulerově-Lagrangeově rovnici známé z teoretické fyziky, a nakonec softwarové objektově orientované modelování reprezentované jazyky Modelica či Simscape nabízející velmi praktickou alternativu k modelování pomocí grafů signálových toků či blokových diagramů implementovanému například v populárním Simulinku.

Ať už se k matematickému modelu dostaneme jakoukoliv cestou, jedním ze způsobů jeho analýzy je simulace, tedy numerické řešení souvisejících diferenciálních či algebro-diferenciálních rovnic. V tomto předmětu se spolehneme, že základní koncepty a postupy pro numerické řešení obyčejných diferenciálních rovnic již byly představeny v některém z matematických předmětů, a budeme se pouze příležitostně zastavovat u některých praktických problémů, jako jsou volba vhodného numerického řešiče či přesnost a časová náročnost simulace.
Cíle studia
Naučit studenty vytvářet modely realisticky složitých dynamických systémů nejrozmanitější fyzikální povahy, a tyto modely s využitím moderních softwarových nástrojů analyzovat pomocí numerické simulace.
Osnovy přednášek
1. Formáty matematických modelů dynamických systémů: stavové rovnice, přenosové funkce, algebro-diferenciální rovnice, polynomiální maticové zlomky.
2. Základní principy a prvky pro modelování pomocí výkonových vazebních grafů
3. Modelování jednoduchých systémů pomocí vazebních grafů, doplnění kauzality a extrakce signálových modelů (ala schéma v Simulinku) z vazebních grafů
4. Extrakce stavových rovnic z kauzálních vazebních grafů; další příklady modelování vazebními grafy; redukce modelů úpravami vazebních grafů
5. Úvod do použití Euler-Lagrangeovy rovnice pro modelování dynamických systémů (mechanické, elektrické)
6. Použití Euler-Lagrangeovy rovnice pro modelování sériových robotických manipulátorů
7. Použití Newton-Eulerova vektorového přístupu pro modelování sériových robotických manipulátorů
8. Příklady průmyslových projektů, kde modelování a simulace výrazně přispěly k monitorování neměřených či neměřitelných veličin v reálném čase, podpoře dispečerského řízení, návrhu algoritmů automatického řízení či plánování operací (pozván přednášející z průmyslu)
9. Software pro modelování a simulaci dynamických systémů; objektově-orientované modelování; jazyky Modelica a Simscape
10. Hybridní dynamické systémy: hybridní automaty, spínané systémy
11. Tepelné systémy pomocí vazebních a pseudovazebních grafů
12. Modelování pomocí vazebních grafů v dalších fyzikálních doménách: magnetické obvody, piezoelektrické aktuátory
13. Systémy s rozprostřenými parametry a jejich aproximace: tepelná rovnice, analýza a numerické řešení
14. Systémy s rozprostřenými parametry s málo tlumenými módy: vlnová rovnice, její analýza a numerické řešení
Osnovy cvičení
Část cvičení (zejména na začátku předmětu) bude realizována jako výpočetní, kdy studenti budou samostatně pracovat na zadaných větších projektech s možností konzultací s přítomným vyučujícím. Větší část cvičení ale bude věnována samostatné práci studentů na laboratorních úlohách.
Literatura
Předmět je z větší části postaven na kvalitní monografii používané v obdobných vysokoškolských předmětech po celém světě. Tato je již dnes v počtu cca 30 kusů dostupná ve fakultní knihovně a rezervována pro studenty předmětu:

F. T. Brown, Engineering System Dynamics. A Unified Graph-Centered Approach, 2. vydání. CRC Press, 2006.
Požadavky
Solidní zvládnutí všech partií vysokoškolské fyziky, zejména mechaniky, elektromagnetismu a termodynamiky. Základy z diferenciálního počtu (diferenciální rovnice a jejich numerické řešení) a lineární algebry (soustava lineárních rovnic a její numerické řešení). Užitečná je znalost základních pojmů a konceptů z automatického řízení (stavový model, přenosová funkce, stabilita).

Modelování a simulace dynamických systémů - A3B35MSD

Kredity 6
Semestry zimní
Zakončení zápočet a zkouška
Jazyk výuky čeština
Rozsah výuky 2P+2L
Anotace
Cílem předmětu je naučit se vytvářet matematické modely složitých dynamických systémů, a to sice modely použitelné coby podklad pro návrh řídicích algoritmů. Budeme se soustředit na systémy obsahující podsystémy různé fyzikální povahy. Ukážeme si, že koncept energie (či výkonu), který je univerzálně platný napříč fyzikálními doménami, je tím správný nástrojem pro spojování subsystémů elektrických, mechanických, hydraulických, ale i termodynamických. Některé poznatky a dovednosti získané v tomto kurzu však budou alespoň částečně použitelné i v oblastech, kde koncept energie není tak užitečný (systémy sociologické, ekonomické). Představíme si tři skupiny metod, které konceptu energie využívají, a to sice analytické metody pro Lagrangeovské a Hamiltonovské modelování známé z teoretické mechaniky, objektově orientované modelování coby alternativu více rozšířeného modelování pomocí blokových diagramů, a především velmi intuitivní metodiku vazebních grafů. Ať už se k matematickému modelu dostaneme jakoukoliv cestou, jedním ze způsobů jeho analýzy je simulace, tedy numerické řešení souvisejících diferenciálních či algebro-diferenciálních rovnic. V kurzu si představíme aspoň základní metody pro numerické řešení obyčejných diferenciálních rovnic s motivací získat porozumění problematice aproximačních chyb, numerické stability i vhodnosti různých metod pro různé modely.
Cíle studia
Naučit studenty vytvářet modely realisticky složitých dynamických systémů nejrozmanitější fyzikální povahy, a tyto modely s využitím moderních softwarových nástrojů analyzovat pomocí numerické simulace.
Osnovy přednášek
1.) Přehled formátů matematických modelů pro dynamické systémy
2.) Základní koncepty a komponenty pro modelování dynamiky pomocí vazebních grafů. Ilustrace pro mechanické, elektrické a hydraulické systémy
3.) Modelování jednoduchých systémů pomocí vazebních grafů, doplnění kauzality a extrakce signálových modelů z vazebních grafů
4.) Exktrakce stavových rovnic z kauzálních vazebních grafů; další příklady modelování vazebními grafy; redukce modelů úpravami vazebních grafů
5.) Úvod do metod analytické mechaniky - Lagrangeova metoda
6.) Použití Lagrangeova přístupu pro odvozování modelů složitějších systémů
7.) Příklady průmyslových projektů, kde modelování a simulace výrazně přispěly k monitorování neměřených či neměřitelných veličin v reálném čase, podpoře dispečerského řízení, návrhu algoritmů automatického řízení či plánování operací
8.) Software pro modelování a simulaci dynamických systémů
9.) Hybridní dynamické systémy
10.) Tepelné systémy pomocí vazebních grafů
11.) Numerická simulace dynamických systémů
12.) Numerická simulace dynamických systémů
13.) Modelování systémů s rozprostřenými parametry pomocí vazebních grafů
Osnovy cvičení
Náplní samotného cvičení je práce na zadaných projektech.
Literatura
Předmět je postaven na následující knize

[1.] F. T. Brown, Engineering System Dynamics. A Unified Graph-Centered Approach, Second Edition, 2nd ed. CRC Press, 2006.

Kniha je v počtu cca 30 kusů k dispozici ve fakultní knihovně v NTK k zapůjčení pro studenty předmětu na celý semestr. Předmět je do značné míry založen i na samostatné práci studentů s knihou.

Další doporučenou knihou, která je do značné míry záměnná s [1] je

[2.] D.C. Karnopp et al. System Dynamics: Modeling and simulation of mechatronic systems. Wiley, 4. vyd., 2006.

Avšak nebudeme se na přístup studentů k této knize nikterak spoléhat.

Další doporučení na literaturu jsou na webu předmětu na http://dce.fel.cvut.cz/msd.
Požadavky
Solidní zvládnutí všech partií vysokoškolské fyziky, zejména mechaniky, elektromagnetismu a termodynamiky. Základy z diferenciálního počtu (diferenciální rovnice a jejich numerické řešení) a lineární algebry (soustava lineárních rovnic a její numerické řešení).

Stránky předmětu: http://moodle.fel.cvut.cz