### BE5B01DMG - Discrete Mathematics and Graphs

The aim of the course is to introduce students to fundamentals of Discrete Mathematics with focus on electrical engineering. The content of the course covers fundamentals of propositional and predicate logic, infinite sets with focus on the notion of cardinality of sets, binary relations with focus on equivalences and partial orderings; integers, relation modulo; algebraic structures including Boolean algebras. Further, the course covers basics of the Theory of Graphs.

#### Lectures:

- Foundation of Propositional logic, Boolean calculus.
- Foundation of Predicate logic, quantifiers, interpretation.
- Sets, cardinality of sets, countable and uncountable sets.
- Binary relations on a set, equivalence relation, partial order.
- Integers, Euclid (extended) algorithms.
- Relation modulo n, congruence classes Zn and operations on Zn.
- Algebraic operations, semigroups, groups.
- Sets together with two binary operations, Boolean algebras.
- Rings of congruence classes Zn, fields Zp.
- Undirected graphs, trees and spanning trees.
- Directed graphs, strong connectivity and acyclic graphs.
- Euler graphs and Hamiltonian graphs, coloring.
- Combinatorics.
- Reserve.

#### Tutorials:

- Foundation of Propositional logic, Boolean calculus.
- Foundation of Predicate logic, quantifiers, interpretation.
- Sets, cardinality of sets, countable and uncountable sets.
- Binary relations on a set, equivalence relation, partial order.
- Integers, Euclid (extended) algorithms.
- Relation modulo n, congruence classes Zn and operations on Zn.
- Algebraic operations, semigroups, groups.
- Sets together with two binary operations, Boolean algebras.
- Rings of congruence classes Zn, fields Zp.
- Undirected graphs, trees and spanning trees.
- Directed graphs, strong connectivity and acyclic graphs.
- Euler graphs and Hamiltonian graphs, coloring.
- Combinatorics.
- Reserve.