Engineering Applications - BE1M15IAP

Kredity 5
Semestry zimní
Zakončení Zápočet a zkouška
Jazyk výuky angličtina
Rozsah výuky 2P+2C
Anotace
Cílem předmětu je získat přehled o řešení základních matematických problémů vyskytujících se v technické praxi pomocí počítačových algebraických systémů.
Osnovy přednášek
1. Analytická a numerická řešení technických úloh, příklady z elektrotechniky.
2. Finitní a numerická řešení soustav lin. rovnic, příklady z elektrických obvodů.
3. Numerická řešení nelineárních rovnic a jejich soustav, load flow.
4. Volné a vázané extrémy funkcí více proměnných, přehled používaných metod.
5. Řešení přeurčených soustav rovnic, lineární regrese.
6. Nelineární regrese, proklady funkcí.
7. Interpolace, využití interpolace v technické praxi a pro řešení rovnic.
8. Numerická kvadratura, ukázka určení energie z časového průběhu výkonu.
9. Numerické metody řešení ODE.
10. Vlastní čísla a vektory matic, souvislost se stabilitou lin. dynamických systémů.
11. Základní úlohy na PDE v silnoproudé praxi (tepelná a difúzní rovnice, rovnice elmag. pole), metoda sítí a Schmidtova metoda pro parabolické rovnice.
12. Ukázky zpracování signálů, určení Fourierovy řady.
13. Ukázky zpracování signálů, určení frekvence a synchrofázorů.
14. Rezerva.
Osnovy cvičení
1. Analytical and numerical solutions of technical problems, electrical engineering examples
2. Eigenvalues and eigenvectors of matrices and the stability of dynamic linear systems
3. Finite and numerical solution of systems lin. equations, examples of electrical circuits, linear transformations
4. Free and constrained extremes of functions, overview of methods
5. Use optimization methods for the design of power devices
6. Overdetermined lin. equations, interpolation, regression
7. Examples of signal processing, Fourier series
8. Numerical quadrature (example of the determination of energy from time dependence of the power, basic numer. Methods for solving ODE)
9. Basic tasks using PDE in heavy power engineering, boundary and initial conditions (heat and diffusion equation, electromagnetic. field equations), Schmidt's method for parabolic equations
10. Weak solutions of PDE, Galerkin method, the use of FEM
11. Statistics and probability in technical tasks
12. Reliability assessment of basic arrangements
13. Correspondence of different task types, frequently used functions for approximation
14. Reserve
Literatura
DETTMAN, J. Matematické metody ve fyzice a technice. Praha: Academia, 1970, 355 s.
JAN HAMHALTER, Jaroslav Tišer. Diferenciální počet funkcí více proměnných. Vyd. 2. Praha: Česká technika - nakladatelství ČVUT, 2005. ISBN 80-010-3356-2.
JAN HAMHALTER, Jaroslav Tišer. Integrální počet funkcí více proměnných. Vyd. 2. Praha: Česká technika - nakladatelství ČVUT, 2005. ISBN 80-010-3357-0.
OLŠÁK, Petr. Úvod do algebry, zejména lineární. Vyd. 1. Praha: FEL ČVUT v Praze, 2007. ISBN 978-800-1037-751.
www.powerwiki.cz
Požadavky
Podmínkami pro získání zápočtu je účast na cvičeních a vypracování semestrální práce.
Úspěšné složení zkoušky se řídí Studijním a zkušebním řádem pro studenty ČVUT v Praze.