Moodle FEL ČVUT
Probability and Statistics
B241 - Zimní 24/25
Probability and Statistics - BE5B01PRS
Kredity | 7 |
Semestry | zimní |
Zakončení | zápočet a zkouška |
Jazyk výuky | angličtina |
Rozsah výuky | 4P+2S |
Anotace
Cílem předmětu je seznámit studenty se základy teorie pravděpodobnosti a matematické statistiky, jejich výpočetními metodami a aplikacemi těchto matematických nástrojů na praktické příklady.
Cíle studia
Seznámit studenty se základy teorie pravděpodobnosti a matematické statistiky, jejich výpočetními metodami a aplikacemi těchto matematických nástrojů na praktické příklady.
Osnovy přednášek
1. Náhodné jevy, pravděpodobnost, pravděpodobnostní prostor - definice a základní typy.
2. Podmíněná pravděpodobnost, Bayesova věta, nezávislost jevů.
3. Náhodná veličina - definice, distribuční funkce a její užití.
4. Základní charakteristiky náhodných veličin - střední hodnota, rozptyl a jiné momenty.
5. Diskrétní náhodná veličina - definice, popis, příklady diskrétních náhodných veličin.
6. Spojitá náhodná veličina - definice, popis, příklady spojitých náhodných veličin.
7. Nezávislost náhodných veličin, kovariance a korelace.
8. Rozdělení součtu nezávislých náhodných veličin, konvoluce.
9. Náhodný vektor - definice, popis, marginální rozdělení, význam ve statistice.
10. Centrální limitní věta - využití pro základní výpočty, význam ve statistice.
11. Základní pojmy ve statistice - náhodný výběr, výběrový průměr, výběrový rozptyl, kvantil, empirická distribuční funkce, histogram, krabicový graf.
12. Bodové odhady parametrů - nestrannost, metoda momentů, metoda maximální věrohodnosti.
13. Intervalové odhady parametrů a testování hypotéz.
14. Markovské řetězce.
2. Podmíněná pravděpodobnost, Bayesova věta, nezávislost jevů.
3. Náhodná veličina - definice, distribuční funkce a její užití.
4. Základní charakteristiky náhodných veličin - střední hodnota, rozptyl a jiné momenty.
5. Diskrétní náhodná veličina - definice, popis, příklady diskrétních náhodných veličin.
6. Spojitá náhodná veličina - definice, popis, příklady spojitých náhodných veličin.
7. Nezávislost náhodných veličin, kovariance a korelace.
8. Rozdělení součtu nezávislých náhodných veličin, konvoluce.
9. Náhodný vektor - definice, popis, marginální rozdělení, význam ve statistice.
10. Centrální limitní věta - využití pro základní výpočty, význam ve statistice.
11. Základní pojmy ve statistice - náhodný výběr, výběrový průměr, výběrový rozptyl, kvantil, empirická distribuční funkce, histogram, krabicový graf.
12. Bodové odhady parametrů - nestrannost, metoda momentů, metoda maximální věrohodnosti.
13. Intervalové odhady parametrů a testování hypotéz.
14. Markovské řetězce.
Osnovy cvičení
1. Náhodné jevy, pravděpodobnost, pravděpodobnostní prostor - definice a základní typy.
2. Podmíněná pravděpodobnost, Bayesova věta, nezávislost jevů.
3. Náhodná veličina - definice, distribuční funkce a její užití.
4. Základní charakteristiky náhodných veličin - střední hodnota, rozptyl a jiné momenty.
5. Diskrétní náhodná veličina - definice, popis, příklady diskrétních náhodných veličin.
6. Spojitá náhodná veličina - definice, popis, příklady spojitých náhodných veličin.
7. Nezávislost náhodných veličin, kovariance a korelace.
8. Rozdělení součtu nezávislých náhodných veličin, konvoluce.
9. Náhodný vektor - definice, popis, marginální rozdělení, význam ve statistice.
10. Centrální limitní věta - využití pro základní výpočty, význam ve statistice.
11. Základní pojmy ve statistice - náhodný výběr, výběrový průměr, výběrový rozptyl, kvantil, empirická distribuční funkce, histogram, krabicový graf.
12. Bodové odhady parametrů - nestrannost, metoda momentů, metoda maximální věrohodnosti.
13. Intervalové odhady parametrů a testování hypotéz.
14. Markovské řetězce.
2. Podmíněná pravděpodobnost, Bayesova věta, nezávislost jevů.
3. Náhodná veličina - definice, distribuční funkce a její užití.
4. Základní charakteristiky náhodných veličin - střední hodnota, rozptyl a jiné momenty.
5. Diskrétní náhodná veličina - definice, popis, příklady diskrétních náhodných veličin.
6. Spojitá náhodná veličina - definice, popis, příklady spojitých náhodných veličin.
7. Nezávislost náhodných veličin, kovariance a korelace.
8. Rozdělení součtu nezávislých náhodných veličin, konvoluce.
9. Náhodný vektor - definice, popis, marginální rozdělení, význam ve statistice.
10. Centrální limitní věta - využití pro základní výpočty, význam ve statistice.
11. Základní pojmy ve statistice - náhodný výběr, výběrový průměr, výběrový rozptyl, kvantil, empirická distribuční funkce, histogram, krabicový graf.
12. Bodové odhady parametrů - nestrannost, metoda momentů, metoda maximální věrohodnosti.
13. Intervalové odhady parametrů a testování hypotéz.
14. Markovské řetězce.
Literatura
[1] Papoulis, A.: Probability and Statistics, Prentice-Hall, 1990.
[2] Stewart W.J.: Probability, Markov Chains, Queues, and Simulation: The Mathematical Basis of Performance Modeling. Princeton University Press 2009.
[2] Stewart W.J.: Probability, Markov Chains, Queues, and Simulation: The Mathematical Basis of Performance Modeling. Princeton University Press 2009.
Požadavky
Základní metody výpočtu integrálů.