CTU FEE Moodle
Modeling and simulation of dynamic systems
B241 - Winter 2024/2025
This is a grouped Moodle course. It consists of several separate courses that share learning materials, assignments, tests etc. Below you can see information about the individual courses that make up this Moodle course.
Modeling and simulation of dynamic systems - B3B35MSD
Main course
Credits | 4 |
Semesters | Winter |
Completion | Assessment + Examination |
Language of teaching | Czech |
Extent of teaching | 2P+2L |
Annotation
Cílem předmětu je naučit (se) vytvářet matematické modely složitých dynamických systémů, a to za účelem návrhu řídicích algoritmů. Budeme chtít umět modelovat pomocí jednotné metodiky realisticky složité dynamické systémy obsahující podsystémy a prvky z různých fyzikálních domén jako jsou elektronika, mechanika, magnetismus, piezoelektřina, hydraulika, pneumatika či termodynamika.
Ukážeme si, že je to právě energie (a výkon), která je univerzálním platidlem napříč fyzikálními doménami, a tudíž námi prozkoumávané modelovací metody budou založeny na sledování toku energie (výkonu) mezi podsystémy a prvky. Představíme si tři skupiny energeticky založených modelovacích metod, a to sice velmi intuitivní grafickou metodu výkonových vazebních grafů, dále pak analytickou metodu založenou na Eulerově-Lagrangeově rovnici známé z teoretické fyziky, a nakonec softwarové objektově orientované modelování reprezentované jazyky Modelica či Simscape nabízející velmi praktickou alternativu k modelování pomocí grafů signálových toků či blokových diagramů implementovanému například v populárním Simulinku.
Ať už se k matematickému modelu dostaneme jakoukoliv cestou, jedním ze způsobů jeho analýzy je simulace, tedy numerické řešení souvisejících diferenciálních či algebro-diferenciálních rovnic. V tomto předmětu se spolehneme, že základní koncepty a postupy pro numerické řešení obyčejných diferenciálních rovnic již byly představeny v některém z matematických předmětů, a budeme se pouze příležitostně zastavovat u některých praktických problémů, jako jsou volba vhodného numerického řešiče či přesnost a časová náročnost simulace.
Ukážeme si, že je to právě energie (a výkon), která je univerzálním platidlem napříč fyzikálními doménami, a tudíž námi prozkoumávané modelovací metody budou založeny na sledování toku energie (výkonu) mezi podsystémy a prvky. Představíme si tři skupiny energeticky založených modelovacích metod, a to sice velmi intuitivní grafickou metodu výkonových vazebních grafů, dále pak analytickou metodu založenou na Eulerově-Lagrangeově rovnici známé z teoretické fyziky, a nakonec softwarové objektově orientované modelování reprezentované jazyky Modelica či Simscape nabízející velmi praktickou alternativu k modelování pomocí grafů signálových toků či blokových diagramů implementovanému například v populárním Simulinku.
Ať už se k matematickému modelu dostaneme jakoukoliv cestou, jedním ze způsobů jeho analýzy je simulace, tedy numerické řešení souvisejících diferenciálních či algebro-diferenciálních rovnic. V tomto předmětu se spolehneme, že základní koncepty a postupy pro numerické řešení obyčejných diferenciálních rovnic již byly představeny v některém z matematických předmětů, a budeme se pouze příležitostně zastavovat u některých praktických problémů, jako jsou volba vhodného numerického řešiče či přesnost a časová náročnost simulace.
Study targets
Teach students to create mathematical models of realistically complex dynamic systems found in diverse application areas and analyze these by means of numerical simulations.
Course outlines
1. Formáty matematických modelů dynamických systémů: stavové rovnice, přenosové funkce, algebro-diferenciální rovnice, polynomiální maticové zlomky.
2. Základní principy a prvky pro modelování pomocí výkonových vazebních grafů
3. Modelování jednoduchých systémů pomocí vazebních grafů, doplnění kauzality a extrakce signálových modelů (ala schéma v Simulinku) z vazebních grafů
4. Extrakce stavových rovnic z kauzálních vazebních grafů; další příklady modelování vazebními grafy; redukce modelů úpravami vazebních grafů
5. Úvod do použití Euler-Lagrangeovy rovnice pro modelování dynamických systémů (mechanické, elektrické)
6. Použití Euler-Lagrangeovy rovnice pro modelování sériových robotických manipulátorů
7. Použití Newton-Eulerova vektorového přístupu pro modelování sériových robotických manipulátorů
8. Příklady průmyslových projektů, kde modelování a simulace výrazně přispěly k monitorování neměřených či neměřitelných veličin v reálném čase, podpoře dispečerského řízení, návrhu algoritmů automatického řízení či plánování operací (pozván přednášející z průmyslu)
9. Software pro modelování a simulaci dynamických systémů; objektově-orientované modelování; jazyky Modelica a Simscape
10. Hybridní dynamické systémy: hybridní automaty, spínané systémy
11. Tepelné systémy pomocí vazebních a pseudovazebních grafů
12. Modelování pomocí vazebních grafů v dalších fyzikálních doménách: magnetické obvody, piezoelektrické aktuátory
13. Systémy s rozprostřenými parametry a jejich aproximace: tepelná rovnice, analýza a numerické řešení
14. Systémy s rozprostřenými parametry s málo tlumenými módy: vlnová rovnice, její analýza a numerické řešení
2. Základní principy a prvky pro modelování pomocí výkonových vazebních grafů
3. Modelování jednoduchých systémů pomocí vazebních grafů, doplnění kauzality a extrakce signálových modelů (ala schéma v Simulinku) z vazebních grafů
4. Extrakce stavových rovnic z kauzálních vazebních grafů; další příklady modelování vazebními grafy; redukce modelů úpravami vazebních grafů
5. Úvod do použití Euler-Lagrangeovy rovnice pro modelování dynamických systémů (mechanické, elektrické)
6. Použití Euler-Lagrangeovy rovnice pro modelování sériových robotických manipulátorů
7. Použití Newton-Eulerova vektorového přístupu pro modelování sériových robotických manipulátorů
8. Příklady průmyslových projektů, kde modelování a simulace výrazně přispěly k monitorování neměřených či neměřitelných veličin v reálném čase, podpoře dispečerského řízení, návrhu algoritmů automatického řízení či plánování operací (pozván přednášející z průmyslu)
9. Software pro modelování a simulaci dynamických systémů; objektově-orientované modelování; jazyky Modelica a Simscape
10. Hybridní dynamické systémy: hybridní automaty, spínané systémy
11. Tepelné systémy pomocí vazebních a pseudovazebních grafů
12. Modelování pomocí vazebních grafů v dalších fyzikálních doménách: magnetické obvody, piezoelektrické aktuátory
13. Systémy s rozprostřenými parametry a jejich aproximace: tepelná rovnice, analýza a numerické řešení
14. Systémy s rozprostřenými parametry s málo tlumenými módy: vlnová rovnice, její analýza a numerické řešení
Exercises outlines
Část cvičení (zejména na začátku předmětu) bude realizována jako výpočetní, kdy studenti budou samostatně pracovat na zadaných větších projektech s možností konzultací s přítomným vyučujícím. Větší část cvičení ale bude věnována samostatné práci studentů na laboratorních úlohách.
Literature
Předmět je z větší části postaven na kvalitní monografii používané v obdobných vysokoškolských předmětech po celém světě. Tato je již dnes v počtu cca 30 kusů dostupná ve fakultní knihovně a rezervována pro studenty předmětu:
F. T. Brown, Engineering System Dynamics. A Unified Graph-Centered Approach, 2. vydání. CRC Press, 2006.
F. T. Brown, Engineering System Dynamics. A Unified Graph-Centered Approach, 2. vydání. CRC Press, 2006.
Requirements
Solid mastering all the parts of physics (at the undergraduate level), above all mechanics, electromagnetism and thermodynamics. Familiarity with basic results from differential calculus (differential equations and their numerical solution) and linear algebra (sets of linear equations and their numerical solution). Basic concepts from automatic control (state space models, transfer functions, stability).
Modeling and simulation of dynamic systems - A3B35MSD
Credits | 6 |
Semesters | Winter |
Completion | Assessment + Examination |
Language of teaching | Czech |
Extent of teaching | 2P+2L |
Annotation
The goal of the course is to teach you how to build control-oriented mathematical models of complex dynamic systems. The focus will be on modeling techniques that can glue together subsystems from diverse physical domains. We will show that the concept of energy (or power), which is universally valid across physical domains, is the right tool for combining electrical, mechanical, hydraulic, pneumatic, thermal and thermodynamic systems. Some of the methods presented in this course will be at least partially useful in the domains where the concept of energy is not so useful such as socio-economic systems. In total we will introduce three groups of modeling techniques, which are based on the concept of energy. Analytical methods based on the Lagrangean and Hamiltonian functions well known from the studies in theoretical physics and/or mechanics, object-oriented modeling as an alternative to the more widespread block-oriented modeling, and last but not least an intuitive graphical techniques known as bond graph modeling. Whichever methodology is followed to create the mathematical model, of of the ways to analyze it is a numerical simulation, that is, numerical solution of the corresponding differential or differential-algebraic equations. In this course we will be exposed to the basics of numerical techniques for differential and differential-algebraic equations with the objective to understand the basic issues such as approximation errors, numerical stability and suitability of the common methods for different classes of models.
Study targets
Teach students to create mathematical models of realistically complex dynamic systems found in diverse application areas and analyze these by means of numerical simulations.
Course outlines
1.) Overview of formats of mathematical models of dynamical systems; partially a recap and partially new
2.) Basic concepts and components for modeling using bond graphs. Simple examples for electrical, mechanical and hydraulic systems
3.) Modeling simple systems using bond graphs; adding causal strokes and extracting a signal model from a bond graph
4.) Obtaining state-space quations from causal bond graphs; further examples of modeling using bond graphs; reductions of bond graphs
5.) Introduction to the Lagrange methodology
6.) Using Lagrange methodology to model multibody mechanical systems
7.) Examples of modeling and simulation projects from industry.
8.) Software for modeling and simulation of dynamic systems
9.) Hybrid dynamic systems
10.) Thermal systems modeled using bond graphs
11.) Algorithms and concepts of numerical simulation of dynamical systems
12.) Algorithms and concepts of numerical simulation of dynamical systems
13.) Modeling distributed parameter systems using bond graphs
2.) Basic concepts and components for modeling using bond graphs. Simple examples for electrical, mechanical and hydraulic systems
3.) Modeling simple systems using bond graphs; adding causal strokes and extracting a signal model from a bond graph
4.) Obtaining state-space quations from causal bond graphs; further examples of modeling using bond graphs; reductions of bond graphs
5.) Introduction to the Lagrange methodology
6.) Using Lagrange methodology to model multibody mechanical systems
7.) Examples of modeling and simulation projects from industry.
8.) Software for modeling and simulation of dynamic systems
9.) Hybrid dynamic systems
10.) Thermal systems modeled using bond graphs
11.) Algorithms and concepts of numerical simulation of dynamical systems
12.) Algorithms and concepts of numerical simulation of dynamical systems
13.) Modeling distributed parameter systems using bond graphs
Exercises outlines
The exercises will be dedicated to the work on assigned projects.
Literature
The course is based on
[1.] F. T. Brown, Engineering System Dynamics. A Unified Graph-Centered Approach, Second Edition, 2nd ed. CRC Press, 2006.
The book is available in about 30 copies in the FEL library in NTK. In this course we will rely on students having access to the book.
Another nice book, which can to some extent replace [1] is
[2.] D.C. Karnopp et al. System Dynamics: Modeling and simulation of mechatronic systems. Wiley, 4. vyd., 2006.
But students will not be required to have an access to this book.
For more tips on literature, visit the course website http://dce.fel.cvut.cz/msd
[1.] F. T. Brown, Engineering System Dynamics. A Unified Graph-Centered Approach, Second Edition, 2nd ed. CRC Press, 2006.
The book is available in about 30 copies in the FEL library in NTK. In this course we will rely on students having access to the book.
Another nice book, which can to some extent replace [1] is
[2.] D.C. Karnopp et al. System Dynamics: Modeling and simulation of mechatronic systems. Wiley, 4. vyd., 2006.
But students will not be required to have an access to this book.
For more tips on literature, visit the course website http://dce.fel.cvut.cz/msd
Requirements
Solid mastering all the parts of physics (at the undergraduate level), above all mechanics, electromagnetism and thermodynamics. Familiarity with basic results from differential calculus (differential equations and their numerical solution) and linear algebra (sets of linear equations and their numerical solution).