Discrete Mathematics and Graphs

Login to access the course.
Discrete Mathematics and Graphs (Main course) BE5B01DMG
Credits 5
Semesters Winter
Completion Assessment + Examination
Language of teaching English
Extent of teaching 3P+1S
Annotation
The aim of the course is to introduce students to fundamentals of Discrete Mathematics with focus on electrical engineering. The content of the course covers fundamentals of propositional and predicate logic, infinite sets with focus on the notion of cardinality of sets, binary relations with focus on equivalences and partial orderings; integers, relation modulo; algebraic structures including Boolean algebras. Further, the course covers basics of the Theory of Graphs.
Study targets
The goal of the course is to introduce students with the basic notions from discrete mathematics, namely logic, basics of set theory, binary relationsand binary operations; basics from graph theory and combinatorics.
Course outlines
1. Foundation of Propositional logic, Boolean calculus
2. Foundation of Predicate logic, quantifiers, interpretation.
3. Sets, cardinality of sets, countable and uncountable sets.
4. Binary relations on a set, equivalence relation, partial order.
5. Integers, Euclid (extended) algorithms.
6. Relation modulo n, congruence classes Zn and operations on Zn.
7. Algebraic operations, semigroups, groups.
8. Sets together with two binary operations, Boolean algebras.
9. Rings of congruence classes Zn, fields Zp.
10. Undirected graphs, trees and spanning trees.
11. Directed graphs, strong connectivity and acyclic graphs.
12. Euler graphs and Hamiltonian graphs, coloring.
13. Combinatorics.
Exercises outlines
1. Foundation of Propositional logic, Boolean calculus
2. Foundation of Predicate logic, quantifiers, interpretation.
3. Sets, cardinality of sets, countable and uncountable sets.
4. Binary relations on a set, equivalence relation, partial order.
5. Integers, Euclid (extended) algorithms.
6. Relation modulo n, congruence classes Zn and operations on Zn.
7. Algebraic operations, semigroups, groups.
8. Sets together with two binary operations, Boolean algebras.
9. Rings of congruence classes Zn, fields Zp.
10. Undirected graphs, trees and spanning trees.
11. Directed graphs, strong connectivity and acyclic graphs.
12. Euler graphs and Hamiltonian graphs, coloring.
13. Combinatorics.
Literature
[1] Lindsay N. Childs: A Concrete Introduction to Higher Algebra, Springer; 3rd edition (November 26, 2008), ISBN-10: 0387745270
[2] Richard Johnsonbaugh: Discrete Mathematics, Prentice Hall, 4th edition (1997), ISBN 0-13-518242-5