CTU FEE Moodle
Advanced Matrix Analysis
B252 - Summer 25/26
This course is not present in Moodle. You can visit its homepage by clicking the "Course page (outside Moodle)" button on the right (if available).
Advanced Matrix Analysis - A8B01AMA
| Credits | 4 |
| Semesters | Summer |
| Completion | Assessment + Examination |
| Language of teaching | Czech |
| Extent of teaching | 3P+1S |
Annotation
The course covers advanced topics of linear algebra, in particular matrix factorizations and construction of matrix functions.
Study targets
None
Course outlines
Main topics:
1. Inner product, norm, norm equivalence in finite-dimenstional spaces.
2. Projectors and othogonal projectors, Gram-Schmidt orthogonalization method, QR factorization.
3. Unitary and orthogonal matrices, Householder reduction.
4. Singular value decompostition.
5. Eigenvalues, eigenvectors and eigenspaces, diagonalization, Cholesky factorization.
6. Schur decomposition, normal and Hermitian matrices.
7. Matrix index, nilpotent matrices.
8. Jordan form of a matrix, spectral projectors.
9. Construction of a matrix function by power series and through the spectral decomposition theorem.
10. Matrix functions as Hermite polynomials, Vandermonde system.
11. Matrix exponential, solutions to systems of linear ODE with constant coefficients.
Possible extenstions:
LU factorization, numerical stability of GEM, least squares.
1. Inner product, norm, norm equivalence in finite-dimenstional spaces.
2. Projectors and othogonal projectors, Gram-Schmidt orthogonalization method, QR factorization.
3. Unitary and orthogonal matrices, Householder reduction.
4. Singular value decompostition.
5. Eigenvalues, eigenvectors and eigenspaces, diagonalization, Cholesky factorization.
6. Schur decomposition, normal and Hermitian matrices.
7. Matrix index, nilpotent matrices.
8. Jordan form of a matrix, spectral projectors.
9. Construction of a matrix function by power series and through the spectral decomposition theorem.
10. Matrix functions as Hermite polynomials, Vandermonde system.
11. Matrix exponential, solutions to systems of linear ODE with constant coefficients.
Possible extenstions:
LU factorization, numerical stability of GEM, least squares.
Exercises outlines
None
Literature
1. C. D. Meyer: Matrix Analysis and Applied Linear Algebra, SIAM 2000
2. M. Dont: Maticová analýza, skripta, nakl. ČVUT 2011
2. M. Dont: Maticová analýza, skripta, nakl. ČVUT 2011
Requirements
Good knowledge of fundamental topics of linear algebra and single-variable analysis is a prerequisity. Some of the course topics need implemenation of multivariable analysis concepts (normed spaces, power series). It is thus recommended to complete a multivariable analysis course (MA2) before registering for this course.