Moodle FEL ČVUT
Matematická analýza 2
B241 - Zimní 2024/2025
Matematická analýza 2 - B0B01MA2
Kredity | 7 |
Semestry | oba |
Zakončení | zápočet a zkouška |
Jazyk výuky | čeština |
Rozsah výuky | 4P+2S |
Anotace
Tento předmět pokrývá úvod do diferenciálního a integrálního počtu funkcí více proměnných spolu se základními integrálními větami o křivkovém a plošném integrálu. V další části se probírají řady funkční a mocninné s přihlédnutím na Taylorovy a Fourierovy řady.
Cíle studia
Cílem kurzu je seznámit studenty se základy diferenciálního a
integrálního počtu funkcí více proměnných a základy teorie řad.
integrálního počtu funkcí více proměnných a základy teorie řad.
Osnovy přednášek
1. Funkce více proměnných, limita, spojitost.
2. Směrové a parciální derivace, diferenciál a gradient.
3. Derivace složené funkce, derivace vyšších řádů.
4. Jakobiho matice. Lokální extrémy.
5. Vázané extrémy, Lagrangeova metoda.
6. Dvojný a trojný integrál, Fubiniho věta a věta o substituci.
7. Křivkový integrál funkce, křivkový integrál pole, aplikace.
8. Plošný integrál funkce a pole a jeho aplikace.
9. Gaussova, Greenova, Stokesova věta.
10. Potenciál vektorového pole.
11. Základní kritéria konvergence řad.
12. Funkční řady, Weierstrasseovo kritérium. Mocninné řady.
13. Taylorovy rozvoje a Fourierovy řady.
2. Směrové a parciální derivace, diferenciál a gradient.
3. Derivace složené funkce, derivace vyšších řádů.
4. Jakobiho matice. Lokální extrémy.
5. Vázané extrémy, Lagrangeova metoda.
6. Dvojný a trojný integrál, Fubiniho věta a věta o substituci.
7. Křivkový integrál funkce, křivkový integrál pole, aplikace.
8. Plošný integrál funkce a pole a jeho aplikace.
9. Gaussova, Greenova, Stokesova věta.
10. Potenciál vektorového pole.
11. Základní kritéria konvergence řad.
12. Funkční řady, Weierstrasseovo kritérium. Mocninné řady.
13. Taylorovy rozvoje a Fourierovy řady.
Osnovy cvičení
1. Funkce více proměnných, limita, spojitost.
2. Směrové a parciální derivace, diferenciál a gradient.
3. Derivace složené funkce, derivace vyšších řádů.
4. Jakobiho matice. Lokální extrémy.
5. Vázané extrémy, Lagrangeova metoda.
6. Dvojný a trojný integrál, Fubiniho věta a věta o substituci.
7. Křivkový integrál funkce, křivkový integrál pole, aplikace.
8. Plošný integrál funkce a pole a jeho aplikace.
9. Gaussova, Greenova, Stokesova věta.
10. Potenciál vektorového pole.
11. Základní kritéria konvergence řad.
12. Funkční řady, Weierstrasseovo kritérium. Mocninné řady.
13. Taylorovy rozvoje a Fourierovy řady.
2. Směrové a parciální derivace, diferenciál a gradient.
3. Derivace složené funkce, derivace vyšších řádů.
4. Jakobiho matice. Lokální extrémy.
5. Vázané extrémy, Lagrangeova metoda.
6. Dvojný a trojný integrál, Fubiniho věta a věta o substituci.
7. Křivkový integrál funkce, křivkový integrál pole, aplikace.
8. Plošný integrál funkce a pole a jeho aplikace.
9. Gaussova, Greenova, Stokesova věta.
10. Potenciál vektorového pole.
11. Základní kritéria konvergence řad.
12. Funkční řady, Weierstrasseovo kritérium. Mocninné řady.
13. Taylorovy rozvoje a Fourierovy řady.
Literatura
[1] Hamhalter J. Tišer J.: Diferenciální počet funkcí více proměnných, ČVUT 2005.
[2] Hamhalter J., Tišer J.: Integrální počet funkcí více proměnných, ČVUT 2005.
https://moodle.fel.cvut.cz/course/view.php?id=6317
[2] Hamhalter J., Tišer J.: Integrální počet funkcí více proměnných, ČVUT 2005.
https://moodle.fel.cvut.cz/course/view.php?id=6317
Požadavky
https://moodle.fel.cvut.cz/course/view.php?id=6317