Lineární systémy - B3M35LSY

Kredity 8
Semestry zimní
Zakončení zápočet a zkouška
Jazyk výuky čeština
Rozsah výuky 4P+2C
Anotace
Úvod do teorie lineárních systémů s důrazem na řízení systémů. Cílem předmětu je studium základních vlastností systémů a souvislostí mezi stavovým a přenosovým popisem systému, návrh stavové zpětné vazby, pozorovatele stavu a návrh stabilizujících regulátorů.
Cíle studia
Cílem předmětu je zavedení základních matematických nástrojů pro popis, analýzu a syntézu dynamických systémů. Důraz bude kladen na lineární časově invariantní systémy s více vstupy a více výstupy.
Budou uvedeny jejich vlastnosti, jako stabilita, řiditelnost a pozorovatelnost. Bude zkoumána souvislost mezi stavovým a přenosovým popisem systému a stavová realizace přenosu. Podrobně vysvětlena bude stavová zpětná vazba, pozorovatel stavu a návrh stabilizujících regulátorů. Přednesen bude i úvod ke kvadratické optimalizaci regulátoru a pozorovatele stavu. Okrajově se kurz dotkne i systémů v čase proměnných a systémů nelineárních.
Osnovy přednášek
Systémy a signály. Systémy lineární, časově invariantní, diferenciální a diferenční. Pojem stavu, stavové rovnice.
Řešení stavových rovnic, módy systému, impulzní odezva a přenos systému. Spojité, diskrétní a vzorkované systémy.
Vnitřní a vnější stabilita lineárního systému.
Dosažitelnost a řiditelnost systému.
Pozorovatelnost a konstruovatelnost systému. Duální systémy.
Standardní tvary systémů, Kalmanova dekompozice.
Vnitřní a vnější popis systému. Nuly a póly systému.
Realizace systému. Minimální realizace, vyvážená realizace.
Stavová zpětná vazba, regulace stavu, změna pólů systému.
Injekce výstupu do stavu, odhad stavu.
Vazby mezi systémy, zpětnovazební řízení, stabilizující regulátory.
Stavová realizace stabilizujících regulátorů, separace regulace a odhadu stavu.

Osnovy cvičení
Pro každé cvičení je zveřejněn seznam neřešených příkladů, jejich řešení student odevzdává prostřednictvím webové aplikace před zahájením cvičení. Náplní cvičení je krátký test znalostí, zodpovězení dotazů studentů a řešení obtížnějších příkladů.
Řešení zadaných příkladů v rozsahu 8 hodin týdně, odevzdání prostřednictvím webové aplikace, kontrola a hodnocení asistentem.
Předpokladem pro úspěšné absolvování předmětu jsou znalosti základů lineární algebry, diferenciálních rovnic, Laplaceovy transformace a z-transformace. Přednášky a cvičení jsou vedeny v češtině nebo v angličtině, podle potřeby. Studijní literatura a příklady k řešení jsou v angličtině.
Literatura
ANTSAKLIS, Panos J., MICHEL, Anthony N. A Linear Systems Primer. Birkhäuser, Boston, 2007. ISBN-13: 978-0-8176-4460-4, e-ISBN-13: 978-0-8176-4661-5

V Centrální knihovně ČVUT je k dispozici 60 výtisků.
Knihu lze koupit, například Amazon.com nabízí novou za 42 USD a použitou za 34 USD.
Požadavky
Stránky předmětu: https://moodle.fel.cvut.cz/course/view.php?id=1708