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Short recap of stability analysis for
continuous dynamical systems

Consider the standard state equation .=ẋ f(x)



21.11.2023 16:19Stability of hybrid systems

Stránka 3 z 51http://localhost:3408/?print-pdf=#/title-slide

Equilibrium
 such that .xeq =ẋ 0 = f(x )eq

Without loss of generality .x =eq 0
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(Lyapunov) stability
Starts close, stays close.

For a given , there is a  such that…ε > 0 δ > 0
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Attractivity
Starts close, asymptotically converges.

Global attractivity: asymptotically converges from
anywhere.

Example of attractive but unstable



21.11.2023 16:19Stability of hybrid systems

Stránka 6 z 51http://localhost:3408/?print-pdf=#/title-slide



21.11.2023 16:19Stability of hybrid systems

Stránka 7 z 51http://localhost:3408/?print-pdf=#/title-slide

Asymptotic stability
Stability and attractivity.

Global assymptotic stability: attractivity is global.



21.11.2023 16:19Stability of hybrid systems

Stránka 8 z 51http://localhost:3408/?print-pdf=#/title-slide

Exponential stability
Exponential convergence.
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Stability of time-varying systems
Uniform (Lyapunov, Asymptotic, …): If independent of the
inititial time.
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Stability analysis via Lyapunov
function

 defined on open  containing the origin.V (⋅) ∈ C1 D ⊂ Rn

V (0) = 0, V (x) > 0 for all x ∈ D ∖ {0}

≤

V (x)dt
d

∇V (x) f(x)( )⊤ 0

or

∇V (x) f(x) <( )⊤ 0
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Formulated using comparison
functions

κ (∥x∥) ≤1 V (x)≤ κ (∥x∥),2

where  are class  comparison functions:κ (⋅), κ (⋅)1 2 K

continuous, zero at zero and (strictly) increasing.

If  increases to infinity ( ), the stability is
global.

κ1 κ (⋅) ∈1 K∞

For asymptotic stability

where  is a positive definite continuous function, zero at
the origin.

∇V (x) f(x) ≤( )⊤ −ρ(∥x∥),

ρ(⋅)
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Exponential stability
k ∥x∥ ≤1

p V (x) ≤ k ∥x∥ ,2
p

∇V (x) f(x) ≤( )⊤ −k ∥x∥ .3
p
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Exponential stability with quadratic
Lyapunov function

V (x) = x P x⊤

λ (P )∥x∥ ≤min
2 V (x) ≤ λ (P )∥x∥max

2
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Converse theorems
for (G)UAS,

for Lyapunov stability only time-varying Lyapunov function
guaranteed.
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Equilibrium of a hybrid automaton
For a hybrid system with , the equilibrium 

satisfies

=ẋ

f (x)q

f(q, x) xeq

 for all ,0 = f (x )q eq q ∈ Q

the reset map r(q, q , x ) =′
eq xeq

With no loss of generality .x =eq 0
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Stability of a hybrid automaton
The equilibrium (=0) is stable if for a given  there
exists  such that for all hybrid systems
executions/trajectories starting at ,

xeq ε > 0
δ > 0

(q , x )0 0

∥x ∥ <0 δ ⇒ ∥x(τ)∥ < ε, ∀τ ∈ T ,

where  is a hybrid time and  is the hybrid time domain.τ T
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Asymptotic stability
The equilibrium is stable and furthermore we can choose
some  such thatδ

∥x ∥ <0 δ ⇒ ∥x(τ)∥ =
τ→τ∞
lim 0,

where  if the execution is Zeno and 
otherwise.

τ <∞ ∞ τ =∞ ∞
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Must the individual dynamics be
stable?

A =1 , A =[−1
10

−100
−1

] 2 [ −1
−100

10
−1

]
Both are stable.

Switching can be destabilizing.
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Can the individual dynamics be
unstable?

A =1 , A =[ 1
10

−100
1

] 2 [ 1
−100

10
1

]
Both are unstable.

Switching can be stabilizing.
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Hybrid system stability analysis via
Lyapunov(-like) function

 smooth in  such thatV (q, x) x

V (q, 0) = 0, V (q, x) > 0 for all nonzero x,

∇ V (q, x) f(q, x) ≤( x )⊤ 0

and
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Stricter condition
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Further restricted set of candidate
functions: common Lyapunov
function (CLF)

Just a single Lyapunov function  common for all
discrete states (modes, locations) .

V (x)
q

Implies that arbitrary switching is allowed.

 conservative.→
For switched systems, the analysis can be interpreted within
the framework of differential inclusions

∈ẋ {f (x), f (x), … , f (x)}1 2 m
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(Global) uniform asymptotic stability
There exists  such thatV (q)

κ (∥x∥) ≤ V (x) ≤ κ (∥x∥),1 2

where  are class  comparison functions,κ (⋅), κ (⋅)1 2 K

global for ,κ (⋅) ∈1 K∞

and

where  is a positive definite continuous function, zero at
the origin.

∇V (x) f (x) ≤ −ρ(∥x∥), q ∈ Q,( )⊤
q

ρ(⋅)

Converse theorem for global uniform asymptotic stability
(GUAS).

Nice, a CLF exists for a GUAS system, but how do we find it?

Restrict the set of candidate functions…



21.11.2023 16:19Stability of hybrid systems

Stránka 29 z 51http://localhost:3408/?print-pdf=#/title-slide



21.11.2023 16:19Stability of hybrid systems

Stránka 30 z 51http://localhost:3408/?print-pdf=#/title-slide

Common quadratic Lyapunov
function (CQLF)

A single quadratic Lyapunov function

where .

V (x) = x P x,⊤

P = P ≻⊤ 0
In principle could be used for nonlinear systems, but let’s
consider linear systems here.

Consider  continuous-time LTI systems parameterized by
the system matrices  for  as

r

Ai i = 1, … , r

=ẋ A x(t).i

Time derivatives of  along the trajectory of the -th
system

V (x) i

(x) =V̇ x (A P +⊤
i
⊤ P A )x,i

which, upon introduction of new matrix variables 
 given by

Q =i

Qi
⊤

A P +i
⊤ P A =i Q , i =i 1, … , r

yields

˙
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(x) =V̇ x Q x,⊤
i

from which it follows that all  must satisfy

for (Lyapunov) stability and

for asymptotic stability.

Qi

x Q x ≤⊤
i 0, i = 1, … , r

x Q x <⊤
i 0, i = 1, … , r
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Linear matrix inequality (LMI)

where the inequality reads “positive definite”.

F (X) = F +0 F XG +1 1 F XG +2 2 … + F XG ≻k k 0,

Feasibility LMI problem: does  exist such that the
LMI  is satisfied?

X = X⊤

F (X) ≻ 0
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CQLF as an LMI
P

A P + P A1
⊤

1

A P + P A2
⊤

2

A P + P Ar
⊤

r

≻ 0,

≺ 0,

≺ 0,

⋮

≺ 0.
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Solving in Matlab using YALMIP or CVX
Most numerical solvers for semidefinite programs (SDP) can
handle nonstrict inequalities.

Enforce strict inequality by

P

A P + P A1
⊤

1

A P + P A2
⊤

2

A P + P Ar
⊤

r

⪰ ϵI,

⪯ ϵI,

⪯ ϵI,

⋮

⪯ ϵI.

For LMIs with no affine term, multiply them “arbitrarily” to
get

P

A P + P A1
⊤

1

A P + P A2
⊤

2

A P + P Ar
⊤

r

⪰ I,

⪯ I,

⪯ I,

⋮

⪯ I.
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Solution set of an LMI is convex
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and therefore if a solution  exists such thatP = P ≻⊤ 0
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What if quadratic LF is not enough?
Quadratic Lyapunov function is a (multivariate) polynomial

V (x) = x P x⊤

= [x1 x2] [p11

p12

p12

p22
] [x1

x2
]

= p x + 2p x x + p x11 1
2

12 1 2 22 2

How about a polynomial of a higher degree?

But how do we enforce positive definiteness?
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Positive/nonnegative polynomials
Is the polynomial , positive (or nonnegative)
on the whole ? That is, we ask if

p(x), x ∈ Rn

Rn

p(x) > 0, or p(x) ≥ 0 ∀x ∈ R .n

Example:  for
all  ?

p(x) = 2x +1
4 2x x −1

3
2 x x +1

2
2
2 5x ≥2

4 0
x ∈1 R, x ∈2 R

Additionally,  can be restricted to some  and we
ask if

x X ⊂ Rn

p(x) ≥ 0 ∀ x ∈ X .

Semialgebraic sets  are o#en considered. These are
defined by polynomial inequalities such as

X

g (x) ≥j 0, j = 1, … , m.
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How can we check nonnegativity of
polynomials?

Gridding is not the way to go – we need conditions on the
coefficients of the polynomial so that we can do some
optimization later.

Example: Consider a univariate polynomial

Does it hold that  ?

p(x) = x −4 4x +3 13x −2 18x + 17.

p(x) ≥ 0 ∀x ∈ R
What if we learn that the polynomial can be written as

p = (x − 1) +2 (x −2 2x + 4)2

Obviously, whatever the two squared polynomials are, a#er
squaring they become nonnegative. And summing
nonnegative numbers yields a nonnegative result. Let’s
generalized this.
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Sum of squares (SOS) polynomials
If we can express the polynomial as a sum of squares of
some other polynomials, the original polynomial is
nonnegative

p(x) = p (x) ⇒ p(x) ≥ 0, ∀x ∈ R .
i=1

∑
k

i
2 n
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But the converse does not hold in general – not every
nonnegative polynomial is SOS!

There are only three cases, for which SOS is a necessary and
sufficient condition of nonnegativeness.

: univariate polynomials. The degree (the highest
power)  can be arbitrarily high (but even, obviously).
n = 1

d

 and  is arbitrary: multivariate polynomials of
degree two. Example,  for .
d = 2 n

d = 3 p(x) = x +1
2 x x1 2

2

 and : bivariate polynomials of degree 4 (at
maximum).
n = 2 d = 4

For all other cases all we can say is that

SOS ⇒ p(x) ≥ 0.
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How to get an SOS representation of a
polynomial (or prove that none exist)?

Back to the univariate example first.

One of the two squared polynomials is .x −2 2x + 4
We can write it as

x −2 2x + 4 = .

v⊤

[4 −2 1]

z

⎣
⎡ 1

x

x2⎦
⎤

Then the squared polynomial can be written as

(x −2 2x + 4) =2 z vv z.⊤ ⊤

Note that the the product  is a positive semidefinite
matrix of rank one.

vv⊤

We can similarly express the second squared polynomial

and then

x − 1 =

v⊤

[−1 1 0]

z

⎣
⎡ 1

x

x2⎦
⎤
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(x − 1) =2 z z.⊤ ⎣
⎡−1

1
0 ⎦

⎤
[−1 1 0]

Summing the two squares we get the original polynomial.
But while doing this, we can sum the two rank-one matrices.

where  is

,

p(x) = x − 4x + 13x − 18x + 174 3 2

= P[1 x x2] ⎣
⎡ 1

x

x2⎦
⎤

P ⪰ 0

P = +⎣
⎡ 4

−2
1 ⎦

⎤
[4 −2 1] ⎣

⎡−1
1
0 ⎦

⎤
[−1 1 0]

The matrix that defines the quadratic form is positive
semidefinite and of rank 2.

The rank of the matrix is given by the number of squared
terms in the SOS decomposition.

In a general multivariate case we can proceed similarly. Just
form the vector  from all possible monomials:z

⎡ 1
x

⎤
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z =

⎣

⎡
x1

x2

⋮
xn

x1
2

x x1 2

⋮
xn

2

⋮
x x … x1 2 n

2

⋮
xn

d ⎦

⎤
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But how to determine the coefficients
of the matrix?

Example: .p(x , x ) =1 2 2x +1
4 2x x −1

3
2 x x +1

2
2
2 5x2

4

Define the vector  asz

z = ⎣
⎡ x1

2

x x1 2

x2
2 ⎦

⎤

Then it must be possible to write the polynomial as

p(x , x )1 2 = ⎣
⎡ x1

2

x x1 2

x2
2 ⎦

⎤⊤

⎣
⎡p11

p12

p13

p12

p22

p23

p13

p23

p33
⎦
⎤

⎣
⎡ x1

2

x x1 2

x2
2 ⎦

⎤
= p x + p x11 1

4
33 2

4

+ 2p x x + 2p x x12 1
3

2 23 1 2
3

+ (2p + p )x x13 22 1
2

2
2

This only gives 5 equations.

The sixth is the LMI condition .P ⪰ 0
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Searching for a positive polynomial
Lyapunov function

V (x) is SOS

Ooops,  must be positive and not just nonnegative:V (s)

where  for some .

V (s) − ϕ(x) is SOS,

ϕ(x) = γ x∑i=1
n ∑j=1

d
i
2j

γ > 0

∇V (x) f(x) is SOS( )⊤
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Solving SOS problems
Matlab: SOSTOOLS, …

Julia: SumOfSquares.jl


