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Short recap of stability analysis for
continuous dynamical systems

e Consider the standard state equation & = f(x).
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Equilibrium
¢ Toqsuchthatd = 0 = f(xeq).

= Without loss of generality .q = 0.
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(Lyapunov) stability
e Starts close, stays close.

e Foragivene > 0, thereisad > 0 suchthat...

http://localhost:3408/?print-pdf=#/title-slide Strénka 4 z 51



Stability of hybrid systems 21.11.2023 16:19

Attractivity

e Starts close, asymptotically converges.

e Global attractivity: asymptotically converges from
anywhere.

e Example of attractive but unstable
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Asymptotic stability

e Stability and attractivity.
e Global assymptotic stability: attractivity is global.

http://localhost:3408/?print-pdf=#/title-slide Strénka 7 z 51



Stability of hybrid systems 21.11.2023 16:19

Exponential stability

e Exponential convergence.
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Stability of time-varying systems

e Uniform (Lyapunov, Asymptotic, ...): If independent of the
inititial time.
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Stability analysis via Lyapunov
function
V() € C; defined on open D C RR™ containing the origin.

V(0) =0, V(z) >0forallz € D\ {0}

(VV(2)) flz)<0

y
\

or
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Formulated using comparison
functions

ra([l]]) < Viz)< ra(flz]]),

e where K1(-), Ka(+) are class JC comparison functions:
= continuous, zero at zero and (strictly) increasing.

e If K1 increases to infinity (K,l(°) c K), the stability is
global.

For asymptotic stability

(VV(2)' f(z) < —p(l|z]),

where p(+) is a positive definite continuous function, zero at
the origin.
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Exponential stability
killz|[? < V(z) < ko],

(VV(2))' f(z) < —ksl|z]|”.
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Exponential stability with quadratic
Lyapunov function

V(z) ==z Pz

Amin(P)|z]|* < V(@) < Amax(P)|2 ]
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Converse theorems

e for (G)UAS,

e for Lyapunov stability only time-varying Lyapunov function
guaranteed.
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Equilibrium of a hybrid automaton

e Fora hybrid system with & = f(q, ), the equilibrium Z¢,
N——
fo()
satisfies

= 0 = f,(xeq) forallg € Q,
= the reset map r(q, q, weq) = Teq

e With no loss of generality ¢, = 0.
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Stability of a hybrid automaton

e The equilibrium T (=0) is stable if for a given € > 0 there
exists & > 0 such that for all hybrid systems
executions/trajectories starting at (qo, o),

|xo|| < 0 = ||z(7T)|| <€, VT €T,

= where T is a hybrid time and 7 is the hybrid time domain.
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Asymptotic stability

e The equilibrium is stable and furthermore we can choose
some 0 such that

lzol| <6 = lim |[z(7)]| = 0,

= where T, < o0 if the execution is Zeno and T, = OO
otherwise.
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Must the individual dynamics be
stable?

—-1 —100 ~-1 10
A= [10 —1 ] A= [—100 —1]

e Both are stable.

e Switching can be destabilizing.
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Can the individual dynamics be
unstable?

1 —100 1 10
T P

e Both are unstable.

e Switching can be stabilizing.
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Hybrid system stability analysis via
Lyapunov(-like) function
V (g, x) smooth in x such that

V(g,0) =0, V(g,z) > 0 for all nonzero z,

(V.V(g,2)) flg,z) <0

and

Vig,x) |
) i 1
V(1) W) AV,
\ v \\‘/(1; .X,')
0 , N
f t 3 f
1
q
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Stricter condition

[

Vg, x)

Vi,

V(0,x)
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Further restricted set of candidate
functions: common Lyapunov
function (CLF)

e Just a single Lyapunov function V' (2) common for all
discrete states (modes, locations) q.

e Implies that arbitrary switching is allowed.
= —> conservative.

e For switched systems, the analysis can be interpreted within
the framework of differential inclusions

T € {fl(x)7 f2($), . 7fm($)}
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(Global) uniform asymptotic stability

There exists V'(q) such that

ra(llzl]) < V(z) < sa(llz]),

e where K1(-), Ka(+) are class JIC comparison functions,

e globalforky(-) € Ky,

and

(VV (@) fy(z) < —p(lz]), g€

where p(+) is a positive definite continuous function, zero at
the origin.

Converse theorem for global uniform asymptotic stability
(GUAS).

e Nice, a CLF exists for a GUAS system, but how do we find it?

e Restrict the set of candidate functions...
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Common quadratic Lyapunov
function (CQLF)

e Asingle quadratic Lyapunov function
V(z) =z' Pz,

where P = P = 0.

e |n principle could be used for nonlinear systems, but let’s
consider linear systems here.

e Consider 7 continuous-time LTI systems parameterized by
the system matrices A; fort = 1,...,r as

e Time derivatives of V' () along the trajectory of the ¢-th
system

V(z) =z (A P+ PA;)z,

e which, upon introduction of new matrix variables (); =
T .
(), given by

A,ITP—FPAZ:QZ, 7;:]_,...,7"

e yields
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' T
e from which it follows that all (); must satisfy

z' Q;x <0, 1=1,...,r

for (Lyapunov) stability and

z' Q;x <0, i=1,...,r

for asymptotic stability.
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Linear matrix inequality (LMI)

where the inequality reads “positive definite”.

e Feasibility LMI problem: does X = X ' exist such that the
LMI F'(X) > Qs satisfied?
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CQLF as an LMI

P~ 0,
Al P+ PA; <0,
A;P+PA2<O,

AP+ PA, <0.
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Solving in Matlab using YALMIP or CVX

e Most numerical solvers for semidefinite programs (SDP) can
handle nonstrict inequalities.

e Enforce strict inequality by

P > el
Al P+ PA; <€,

A, P+ PA, < el,

AP+ PA, < €l.

e For LMIs with no affine term, multiply them “arbitrarily” to
get

P-1.
AP+ PA;, <1,
A, P+ PA, <1,

AP+ PA, < 1.
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Solution set of an LMI is convex
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e and therefore if a solution P = P = 0 exists such that
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What if quadratic LF is not enough?

e Quadratic Lyapunov function is a (multivariate) polynomial

V(z)=z'Px

%
_ [ml mz} [Pll Pm] [ 1]
P12 D22| | T2
= prx] + 2p12T1T + Pooko

e How about a polynomial of a higher degree?

e But how do we enforce positive definiteness?
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Positive/nonnegative polynomials

e Isthe polynomial p(x), & € R", positive (or nonnegative)
on the whole R™? That is, we ask if

p(e) >0, or p(x)>0VecR"

e Example: p(x) = 2z} + 2z3x9 — 2323 + 55 > Ofor
allz1 € R,z9 € R?

e Additionally, @ can be restricted to some X C IR™ and we
ask if

plx) >0Veel.

e Semialgebraic sets X are often considered. These are
defined by polynomial inequalities such as

gJ(ZB)ZO, j:]_,,m
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How can we check nonnegativity of
polynomials?

e Gridding is not the way to go - we need conditions on the
coefficients of the polynomial so that we can do some
optimization later.

e Example: Consider a univariate polynomial
_ .4 3 2
p(r) =" —4x° + 132" — 18z + 17.

Does it hold thatp(x) > 0 Vo € R?

e What if we learn that the polynomial can be written as
p=(zx—1)*+ (z* — 2z + 4)°

e Obviously, whatever the two squared polynomials are, after
squaring they become nonnegative. And summing
nonnegative numbers yields a nonnegative result. Let’s
generalized this.
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Sum of squares (SOS) polynomials

e |f we can express the polynomial as a sum of squares of
some other polynomials, the original polynomial is
nonnegative

k
p(x) = Z pi(z)? = p(x) >0, Ve € R™.
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e But the converse does not hold in general - not every
nonnegative polynomial is SOS!

e There are only three cases, for which SOS is a necessary and
sufficient condition of nonnegativeness.

» n = 1:univariate polynomials. The degree (the highest

power) d can be arbitrarily high (but even, obviously).

» d = 2 and nis arbitrary: multivariate polynomials of

degree two. Example,d = 3 forp(x) = a:% + wlw%.

» n = 2 and d = 4: bivariate polynomials of degree 4 (at
maximum).

e For all other cases all we can say is that

SOS = p(z) > 0.
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How to get an SOS representation of a
polynomial (or prove that none exist)?

e Back to the univariate example first.

One of the two squared polynomials is r? — 22 + 4.

We can write it as

1
:132—2:13—|—4:[4 —2 1] T
v! ——

Then the squared polynomial can be written as

(2 — 2z +4)° =z'vv'2.

T

Note that the the product vv
matrix of rank one.

is a positive semidefinite

e We can similarly express the second squared polynomial

-
z—1=|-1 1 0||z
A\ :J? J-mz-

<

and then
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(z—1)=2z'"|1|[-1 1 0]=

e Summing the two squares we get the original polynomial.
But while doing this, we can sum the two rank-one matrices.

p(z) = z* — 4z® + 132> — 18z + 17

1
:[1 T wz}P T ’
72
where P > Qs
e -
P=|-2|4 -2 1]+ |1]|[-1 1 0
_1_ _O_

e The matrix that defines the quadratic form is positive
semidefinite and of rank 2.

= The rank of the matrix is given by the number of squared
terms in the SOS decomposition.

e |n a general multivariate case we can proceed similarly. Just
form the vector Z from all possible monomials:

.
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But how to determine the coefficients
of the matrix?

e Example: p(x1, T2) = 2x] + 2xix9 — TIT3 + ).

e Define the vector 2 as

e Then it must be possible to write the polynomial as

- o T 1 r 92 -
L7 P11 DPi2 D13 Iy
P(wlyfﬂz) — | L1 P12 D22 D23 L1I9
2 2
| Ly | [P13 P23 P33] | L2 _

4 4
= P11 + P33Ty

+ 2p12xi Ty + 2po3 T T

+ (2p13 + pa2)TiT

e Thisonly gives 5 equations.

e The sixth is the LMI condition P > 0.
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Searching for a positive polynomial
Lyapunov function

V(z) isSOS

Ooops, V' (s) must be positive and not just nonnegative:

V(s) — ¢(x) is SOS,

where d(z) = 7> .., Z;.lzl :c,?j for somey > 0.

(VV(z))' f(z) isSOS
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Solving SOS problems

e Matlab: SOSTOOLS, ...
e Julia: SumOfSquares.jl
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