Toto je tzv. shluknutý kurz. Skládá se z několika samostatných předmětů, které sdílejí výukové materiály, úkoly, testy apod. Níže si můžete zobrazit informace o jednotlivých předmětech tvořících tento shluk.

Komplexní analýza - B0B01KAN

Hlavní kurz
Kredity 5
Semestry zimní
Zakončení zápočet a zkouška
Jazyk výuky čeština
Rozsah výuky 2P+2S
Anotace
Student se seznámí se základy teorie funkcí komplexní proměnné a jejími aplikacemi. Budou vysvětleny základní principy Fourierovy, Laplaceovy a Z-transformace, včetně aplikací zejména na řešení diferenciálních a diferenčních rovnic.
Osnovy přednášek
1. Komplexní čísla. Limita a derivace funkce komplexní proměnné.
2. Cauchy-Riemannovy podmínky, holomorfnost. Harmonické funkce.
3. Elementární funkce. Křivkový integrál.
4. Cauchyova věta a Cauchyův integrální vzorec.
5. Reprezentace holomorfní funkce mocninnou řadou.
6. Laurentovy řady. Izolované singularity.
7. Reziduum. Reziduová věta a její aplikace.
8. Fourierovy řady a základní vlastnosti Fourierovy transformace.
9. Věta o inverzní Fourierově transformaci. Aplikace Fourierovy transformace.
10. Základní vlastnosti Laplaceovy transformace.
11. Inverzní Laplaceova transformace. Aplikace Laplaceovy transformace.
12. Základní vlastnosti Z-transformace.
13. Inverzní Z-transformace. Aplikace Z-transformace.
14. Rezerva
Osnovy cvičení
1. Komplexní čísla. Limita a derivace funkce komplexní proměnné.
2. Cauchy-Riemannovy podmínky, holomorfnost. Harmonické funkce.
3. Elementární funkce. Křivkový integrál.
4. Cauchyova věta a Cauchyův integrální vzorec.
5. Reprezentace holomorfní funkce mocninnou řadou.
6. Laurentovy řady. Izolované singularity.
7. Reziduum. Reziduová věta a její aplikace.
8. Fourierovy řady a základní vlastnosti Fourierovy transformace.
9. Věta o inverzní Fourierově transformaci. Aplikace Fourierovy transformace.
10. Základní vlastnosti Laplaceovy transformace.
11. Inverzní Laplaceova transformace. Aplikace Laplaceovy transformace.
12. Základní vlastnosti Z-transformace.
13. Inverzní Z-transformace. Aplikace Z-transformace.
14. Rezerva.
Literatura
[1] J. Hamhalter, J. Tišer: Funkce komplexní proměnné, ČVUT, Praha, 2001.
[2] H. A. Priestley: Introduction to Complex Analysis, Oxford University Press, Oxford, 2003.
[3] E. Kreyszig: Advanced Engineering Mathematics, Wiley, Hoboken, 2011.
[4] L. Debnath, D. Bhatta: Integral Transforms and Their Applications, CRC Press, Boca Raton, 2015.

Komplexní analýza - B0B01KANA

Kredity 4
Semestry zimní
Zakončení zápočet a zkouška
Jazyk výuky čeština
Rozsah výuky 2P+2S
Anotace
Student se seznámí se základy teorie funkcí komplexní proměnné a jejími aplikacemi. Budou vysvětleny základní principy Fourierovy, Laplaceovy a Z-transformace, včetně aplikací zejména na řešení diferenciálních a diferenčních rovnic.
Osnovy přednášek
1. Komplexní čísla. Limita a derivace funkce komplexní proměnné.
2. Cauchy-Riemannovy podmínky, holomorfnost. Harmonické funkce.
3. Elementární funkce. Křivkový integrál.
4. Cauchyova věta a Cauchyův integrální vzorec.
5. Reprezentace holomorfní funkce mocninnou řadou.
6. Laurentovy řady. Izolované singularity.
7. Reziduum. Reziduová věta a její aplikace.
8. Fourierovy řady a základní vlastnosti Fourierovy transformace.
9. Věta o inverzní Fourierově transformaci. Aplikace Fourierovy transformace.
10. Základní vlastnosti Laplaceovy transformace.
11. Inverzní Laplaceova transformace. Aplikace Laplaceovy transformace.
12. Základní vlastnosti Z-transformace.
13. Inverzní Z-transformace. Aplikace Z-transformace.
14. Rezerva
Osnovy cvičení
1. Komplexní čísla. Limita a derivace funkce komplexní proměnné.
2. Cauchy-Riemannovy podmínky, holomorfnost. Harmonické funkce.
3. Elementární funkce. Křivkový integrál.
4. Cauchyova věta a Cauchyův integrální vzorec.
5. Reprezentace holomorfní funkce mocninnou řadou.
6. Laurentovy řady. Izolované singularity.
7. Reziduum. Reziduová věta a její aplikace.
8. Fourierovy řady a základní vlastnosti Fourierovy transformace.
9. Věta o inverzní Fourierově transformaci. Aplikace Fourierovy transformace.
10. Základní vlastnosti Laplaceovy transformace.
11. Inverzní Laplaceova transformace. Aplikace Laplaceovy transformace.
12. Základní vlastnosti Z-transformace.
13. Inverzní Z-transformace. Aplikace Z-transformace.
14. Rezerva.
Literatura
[1] J. Hamhalter, J. Tišer: Funkce komplexní proměnné, ČVUT, Praha, 2001.
[2] H. A. Priestley: Introduction to Complex Analysis, Oxford University Press, Oxford, 2003.
[3] E. Kreyszig: Advanced Engineering Mathematics, Wiley, Hoboken, 2011.
[4] L. Debnath, D. Bhatta: Integral Transforms and Their Applications, CRC Press, Boca Raton, 2015.