Complex Analysis

Login to access the course.
This is a grouped course. It consists of several seperate subjects that share learning materials, assignments, tests etc. Below you can see information about the individual subjects that make up this subject.
Complex Analysis B0B01KANA
Credits 4
Semesters Winter
Completion Assessment + Examination
Language of teaching Czech
Extent of teaching 2P+2S
Annotation
Student se seznámí se základy teorie funkcí komplexní proměnné a jejími aplikacemi. Budou vysvětleny základní principy Fourierovy, Laplaceovy a Z-transformace, včetně aplikací zejména na řešení diferenciálních a diferenčních rovnic.
Course outlines
1. Komplexní čísla. Limita a derivace funkce komplexní proměnné.
2. Cauchy-Riemannovy podmínky, holomorfnost. Harmonické funkce.
3. Elementární funkce. Křivkový integrál.
4. Cauchyova věta a Cauchyův integrální vzorec.
5. Reprezentace holomorfní funkce mocninnou řadou.
6. Laurentovy řady. Izolované singularity.
7. Reziduum. Reziduová věta a její aplikace.
8. Fourierovy řady a základní vlastnosti Fourierovy transformace.
9. Věta o inverzní Fourierově transformaci. Aplikace Fourierovy transformace.
10. Základní vlastnosti Laplaceovy transformace.
11. Inverzní Laplaceova transformace. Aplikace Laplaceovy transformace.
12. Základní vlastnosti Z-transformace.
13. Inverzní Z-transformace. Aplikace Z-transformace.
14. Rezerva
Exercises outlines
1. Komplexní čísla. Limita a derivace funkce komplexní proměnné.
2. Cauchy-Riemannovy podmínky, holomorfnost. Harmonické funkce.
3. Elementární funkce. Křivkový integrál.
4. Cauchyova věta a Cauchyův integrální vzorec.
5. Reprezentace holomorfní funkce mocninnou řadou.
6. Laurentovy řady. Izolované singularity.
7. Reziduum. Reziduová věta a její aplikace.
8. Fourierovy řady a základní vlastnosti Fourierovy transformace.
9. Věta o inverzní Fourierově transformaci. Aplikace Fourierovy transformace.
10. Základní vlastnosti Laplaceovy transformace.
11. Inverzní Laplaceova transformace. Aplikace Laplaceovy transformace.
12. Základní vlastnosti Z-transformace.
13. Inverzní Z-transformace. Aplikace Z-transformace.
14. Rezerva.
Literature
[2] H. A. Priestley: Introduction to Complex Analysis, Oxford University Press, 2003.
Complex Analysis (Main course) B0B01KAN
Credits 5
Semesters Winter
Completion Assessment + Examination
Language of teaching Czech
Extent of teaching 2P+2S
Annotation
Student se seznámí se základy teorie funkcí komplexní proměnné a jejími aplikacemi. Budou vysvětleny základní principy Fourierovy, Laplaceovy a Z-transformace, včetně aplikací zejména na řešení diferenciálních a diferenčních rovnic.
Course outlines
1. Komplexní čísla. Limita a derivace funkce komplexní proměnné.
2. Cauchy-Riemannovy podmínky, holomorfnost. Harmonické funkce.
3. Elementární funkce. Křivkový integrál.
4. Cauchyova věta a Cauchyův integrální vzorec.
5. Reprezentace holomorfní funkce mocninnou řadou.
6. Laurentovy řady. Izolované singularity.
7. Reziduum. Reziduová věta a její aplikace.
8. Fourierovy řady a základní vlastnosti Fourierovy transformace.
9. Věta o inverzní Fourierově transformaci. Aplikace Fourierovy transformace.
10. Základní vlastnosti Laplaceovy transformace.
11. Inverzní Laplaceova transformace. Aplikace Laplaceovy transformace.
12. Základní vlastnosti Z-transformace.
13. Inverzní Z-transformace. Aplikace Z-transformace.
14. Rezerva
Exercises outlines
1. Komplexní čísla. Limita a derivace funkce komplexní proměnné.
2. Cauchy-Riemannovy podmínky, holomorfnost. Harmonické funkce.
3. Elementární funkce. Křivkový integrál.
4. Cauchyova věta a Cauchyův integrální vzorec.
5. Reprezentace holomorfní funkce mocninnou řadou.
6. Laurentovy řady. Izolované singularity.
7. Reziduum. Reziduová věta a její aplikace.
8. Fourierovy řady a základní vlastnosti Fourierovy transformace.
9. Věta o inverzní Fourierově transformaci. Aplikace Fourierovy transformace.
10. Základní vlastnosti Laplaceovy transformace.
11. Inverzní Laplaceova transformace. Aplikace Laplaceovy transformace.
12. Základní vlastnosti Z-transformace.
13. Inverzní Z-transformace. Aplikace Z-transformace.
14. Rezerva.
Literature
[2] H. A. Priestley: Introduction to Complex Analysis, Oxford University Press, 2003.