Optimal control for continuous-time systems CHEATSHEET

Indirect approach via calculus of variations

1 Calculus of variations
Minimization over smooth enough (at least C'*) functions

J(y(x)).

min
y(xz)eCa,b]

Beware: z is the independent variable (often spatial posi-
tion), y() is a function.

Strong vs. weak minimum (easier theory for the weak).

Variation dy() of a function (compare with dz in calculus)

y(x) =y (z) + oy(z)

Variation of a functional (=first-order approximation to A.J)

b
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First-order necessary condition of optimality

0J

55(@) oy(x)dx
——

variational derivative

6J =0, hence =0

5y ()

Recall in calculus dJ = (VJ)Tdz = 0, hence V.J = 0.
For the (cost) functional

b
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subject to

y(a) = Ya, y<a) = Yb,
the necessary conditions of optimality = FEuler-Lagrange equa-
tion

OL(z,y,y")
dy

d OL(z,y,y")

dx oy’ =0

EL equation is a second-order ODE

’ Ly — Lya = Lyyy' — Lyyy" = 0. ‘

hence two initial/boundary conditions needed.
Extensions for constrained problems (Lagrange multipliers).
Sufficiency difficult. Legandre condition

Ly/y/ >0

not sufficient. Jacobi condition needed (but not discussed).

2 General optimal control for a
nonlinear system

minimize
x(t) u(t)
subject to  x(t) = f(x,u,t)

X(ti) =T

|:¢(X(tf),tf) + /t f L(x(t),u(t),t) dt

i

x(t¢) = r¢ or x(t¢) unspecified.

Hamiltonian (two conventions!)
as in physics

H(t,x,u,A) = AT(t) £(x,u, t) — L(t,x,u),
as favored in control theory
H(t,x,u,\) = L(t,x,u) + AT (t) f(x, u, 1)

First-order necessary conditions—two-point boundary value
problem (TP-BVP): state and costate ODEs plus stationarity
equation.

x' = VaH(t,x,u,)
N = VL H(t,x,u, )
0=V,H(t,x,u,\).

If u eliminated, the resulting “true” canonical Hamiltonian
ODE:s solvable numerically (shooting, multiple shooting, col-
location). In Matlab: bvp4c and bvpbec.

For “physics-convention” Hamiltonian

x =f(x,u,t)
A= Vil — Vif A,
0=VuL -V, A
X(ti) =T
X(tf) =TIf Or )\(tf) = —V¢(x(tf))

For “control-convention” Hamiltonian

x =f(x,u,t)
A= Vil — Vif A,
0=VuL+ V.

x(t;) = 1

x(t¢) = re or A(tr) = Vo(x(te))

3 LQ-optimal regulation on a finite time
horizon

minimize  |x"(t¢) S¢ x(tf)
x(t),u(t) ~
>0
- T
+/ x (1) Q x(t)+u(t) R u(t)|dt
; ()>O (t) ()‘>O,()

subject to  x(t) = Ax(t) + Bu(t),
x(0) = ro,
x(t¢) = r¢ or x(t¢) unspecified.

Could be also time-varying: A(t), B(¢).
First-order necessary cond’s (“physical Hamiltonian”)

x = Ax + Bu,
A=Qx—ATX
0=Ru-B"X
x(t;) = r;
x(tg) = r¢ or A(tf) = —Sex(tr)
22J

Sufficiency (luckily) trivial: -3 = R > 0.

Thanks to nonsingularity of R, from the stationarity equa-
tion express u and substitute to the state and costate equations
to get Hamilton canonical equations

x| _|A BR!BT] [x
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For fixed-final state, the optimal control is a precomputed
function/signal (the formula contains an inversion of weighted
finite horizon controllability Gramian).

For free-final state, the optimal control is given by a state-
feedback control

u(t) = —R'BTS(t) x(t).
———
K(t)

where S(t) > 0 is a positive semidefinite solution of (matrix)
differential Riccati equation

—S=SA+ATS+Q-SBR'B"S.

For long enough time horizon, S(¢) (hence K(t)) is most of
time steady (constant).

4 LQR on an infinite time horizon

minimize

x(t),u(t) /0 . (xT(6)Qx(t) + uT (t)Ru(t)) dt

subject to  x(t) = Ax(t) + Bu(¢),
X(O) = Iy.

Steady-state solution to the differential Riccati eqution

found by solving Algebraic Riccati equation (ARE)

0=SA+A"S+Q-SBR'B'S.| (1)

But ARE is a quadratic (matrix) equation and has more
than one solution. We need a unique stabilizing S > 0. Con-
ditions:

e (A, B) stabilizable

o (A,+/Q) detectable. If (A,+/Q) observable, S > 0

(nonzero feedback controller for stable systems).

LTI state-feedback

u(t) = —R'BTSx(¢).
K

Solvers for ARE in Matlab (icare), Mathematica, Octave,
Scilab, Julia, ...

Conservative robustness guarantees (GMy = 2,GM_ =
1/2, PM = £60°).

5 LQ-optimal tracking, tracking+LQR

Optimal for an apriori known reference (not discussed). Track-
ing for class of references (steps, ramps, ...): proportional
feedforward, integral control, state augmentation.
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