
Optimal control for continuous-time systems CHEATSHEET
Indirect approach via calculus of variations

1 Calculus of variations

Minimization over smooth enough (at least C1) functions

min
y(x)∈C1[a,b]

J(y(x)).

Beware: x is the independent variable (often spatial posi-
tion), y() is a function.
Strong vs. weak minimum (easier theory for the weak).
Variation δy() of a function (compare with dx in calculus)

y(x) = y∗(x) + δy(x)

Variation of a functional (=first-order approximation to ∆J)

δJ =

∫ b

a

δJ

δy(x)︸ ︷︷ ︸
variational derivative

δy(x)dx

First-order necessary condition of optimality

δJ = 0, hence
δJ

δy(x)
= 0

Recall in calculus dJ = (∇J)Tdx = 0, hence ∇J = 0.
For the (cost) functional

J(y) =

∫ b

a

L(x, y, y′)dx

subject to
y(a) = ya, y(a) = yb,

the necessary conditions of optimality = Euler-Lagrange equa-
tion

∂L(x, y, y′)

∂y
− d

dx

∂L(x, y, y′)

∂y′
= 0

EL equation is a second-order ODE

Ly − Ly′x − Ly′yy
′ − Ly′y′y′′ = 0.

hence two initial/boundary conditions needed.
Extensions for constrained problems (Lagrange multipliers).
Sufficiency difficult. Legandre condition

Ly′y′ > 0

not sufficient. Jacobi condition needed (but not discussed).

2 General optimal control for a
nonlinear system

minimize
x(t),u(t)

[
φ(x(tf), tf) +

∫ tf

ti

L(x(t),u(t), t) dt

]
subject to ẋ(t) = f(x,u, t)

x(ti) = ri

x(tf) = rf or x(tf) unspecified.

Hamiltonian (two conventions!)
as in physics

H(t,x,u,λ) = λT(t) f(x,u, t)− L(t,x,u),

as favored in control theory

H(t,x,u,λ) = L(t,x,u) + λT(t) f(x,u, t)

First-order necessary conditions—two-point boundary value
problem (TP-BVP): state and costate ODEs plus stationarity
equation.

x′ = ∇λH(t,x,u,λ)

λ′ = −∇xH(t,x,u,λ)

0 = ∇uH(t,x,u,λ).

If u eliminated, the resulting “true” canonical Hamiltonian
ODEs solvable numerically (shooting, multiple shooting, col-
location). In Matlab: bvp4c and bvp5c.

For “physics-convention” Hamiltonian

ẋ = f(x,u, t)

λ̇ = ∇xL−∇xf λ,

0 = ∇uL−∇uf λ

x(ti) = ri

x(tf) = rf or λ(tf) = −∇φ(x(tf))

For “control-convention” Hamiltonian

ẋ = f(x,u, t)

λ̇ = −∇xL−∇xf λ,

0 = ∇uL+∇uf λ

x(ti) = ri

x(tf) = rf or λ(tf) = ∇φ(x(tf))

3 LQ-optimal regulation on a finite time
horizon

minimize
x(t),u(t)

xT(tf ) Sf︸︷︷︸
≥0

x(tf )

+

∫ tf

0

xT(t) Q︸︷︷︸
≥0

x(t) + uT(t) R︸︷︷︸
>0

u(t)

 dt


subject to ẋ(t) = Ax(t) + Bu(t),

x(0) = r0,

x(tf) = rf or x(tf) unspecified.

Could be also time-varying: A(t), B(t).
First-order necessary cond’s (“physical Hamiltonian”)

ẋ = Ax + Bu,

λ̇ = Qx−ATλ

0 = Ru−BTλ

x(ti) = ri

x(tf) = rf or λ(tf) = −Sfx(tf)

Sufficiency (luckily) trivial: ∂2J
∂u2 = R > 0.

Thanks to nonsingularity of R, from the stationarity equa-
tion express u and substitute to the state and costate equations
to get Hamilton canonical equations[

ẋ

λ̇

]
=

[
A BR−1BT

Q −AT

] [
x
λ.

]
For fixed-final state, the optimal control is a precomputed

function/signal (the formula contains an inversion of weighted
finite horizon controllability Gramian).

For free-final state, the optimal control is given by a state-
feedback control

u(t) = −R−1BTS(t)︸ ︷︷ ︸
K(t)

x(t).

where S(t) ≥ 0 is a positive semidefinite solution of (matrix)
differential Riccati equation

−Ṡ = SA + ATS + Q− SBR−1BTS.

For long enough time horizon, S(t) (hence K(t)) is most of
time steady (constant).

4 LQR on an infinite time horizon

minimize
x(t),u(t)

∫ ∞
0

(
xT(t)Qx(t) + uT(t)Ru(t)

)
dt

subject to ẋ(t) = Ax(t) + Bu(t),

x(0) = r0.

Steady-state solution to the differential Riccati eqution
found by solving Algebraic Riccati equation (ARE)

0 = SA + ATS + Q− SBR−1BTS. (1)

But ARE is a quadratic (matrix) equation and has more
than one solution. We need a unique stabilizing S ≥ 0. Con-
ditions:

• (A,B) stabilizable

• (A,
√
Q) detectable. If (A,

√
Q) observable, S > 0

(nonzero feedback controller for stable systems).

LTI state-feedback

u(t) = −R−1BTS︸ ︷︷ ︸
K

x(t).

Solvers for ARE in Matlab (icare), Mathematica, Octave,
Scilab, Julia, . . .

Conservative robustness guarantees (GM+ = 2, GM− =
1/2, PM = ±60◦).

5 LQ-optimal tracking, tracking+LQR

Optimal for an apriori known reference (not discussed). Track-
ing for class of references (steps, ramps, . . . ): proportional
feedforward, integral control, state augmentation.
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