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Complementarity constraints
Two optimization variables (possibly vectors)  and  satisfy
the complementarity constraint if  or  is equal to zero and
both are nonnegative:

x y

x y

xy = 0, x ≥ 0, x ≥ 0,

Hybrid systems (B3M35HYS) Fall 2023



or, using a dedicated compact notation:

Inequalities interpreted componentwise for vectors

​0 ≤ x ⊥ y ≥ 0.

​0 ≤ x ⊥ y ≥ 0.
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Geometric interpretation of
complementarity constraints

The set of admissible pairs  in the  plane is
constrained to the L-shaped subset given by the
nonnegative  and  semi-axes (including the origin).

 nonconvex set.

(x, y) R2

x y

⇒
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Optimization over these constraints is usually difficult,
conditions for Constraint qualification are not met.
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Linear complementarity problem
(LCP)
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For a given square matrix  and a vector  , the linear
complementarity problem asks for finding two vectors 
and  satisfying

Just by moving all the provided data to the right hand side

M q
w

z

​ ​

w −Mz

0 ≤ w

= q
⊥ z ≥ 0.

​ ​

w

0 ≤ f(z)

= ​

f(z)

​Mz + q

⊥ z ≥ 0,
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Existence of a unique solution
of every vector  if and only if the matrix  is a P-matrix.q M
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LCP related to LP and QP
because KKT conditions conditions come in the form of LCP.
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Consider the QP problem with inequality constraints

The KKT conditions are (compare to the conditions for the
equality-constrained QP) can be written

These can be reformatted as

minimize ​x Qx+
2
1 ⊤ c x⊤

subject to Ax ≥ b, x ≥ 0,

​ ​

0 ≤ x

0 ≤ λ

⊥ Qx−A λ+ c ≥ 0⊤

⊥ Ax− b ≥ 0.
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Nonlinear complementarity problem
Given a vector function , find a vector 
satisfying

f : R →n Rn x ∈ Rn

0 ≤ x ⊥ f(x) ≥ 0.
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Mixed complementarity problem
(MCP)
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Extension of complementarity constraint to the situation in
which the variable  is lower- and upper-bounded. In
particular, it can be stated as

The convention for interpretation is

If  is strictly within the interval, that is,  ,
then ,

If  , then  ,

if  , then  .

x

l ≤ x ≤ u ⊥ f(x).

x l < x < u

f(x) = 0

x = l f(x) ≥ 0

x = u f(x) ≤ 0
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Extended linear complementarity
problem (ELCP)
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Given some matrices  and  , vectors  and  , and 
subsets  , find a vector  such that

or show that no such  exists.

The first equation is equivalent to

A B c d m

ϕ ​ ⊂j {1, 2, … , p} x

​ ​

​ ​(Ax− c) ​

j=1

∑
m

i∈ϕ ​j

∏ i

Ax
Bx

= 0,

≥ c,

= d,

x

∀j {1 } ∃i ϕ h th t (A ) 0
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Mathematical programm with
equilibrium constraints (MPCC)

The mathematical program with complementarity
constraints (MPCC) is

Special case of Mathematical program with equilibrium
constraints (MPEC).

​ ​

​

x∈Rn
minimize

subject to

f(x)

0 ≤ h(x) ⊥ g(x) ≥ 0.
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Mathematical program with
equilibrium constraints (MPEC)

Optimization problem in which some variable should satisfy
equilibrium constraints:

For convex  it can be reformulated into a Bilevel
optimization problem.

​ ​

​

x ​,x ​1 2
min

subject to

f(x ​,x ​)1 2

∇ ​ϕ(x ​,x ​) = 0x ​2 1 2

ϕ()
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Bilevel optimization
Optimization problem in which some variables are
constrained to be results of some inner optimization.

In the simplest form

​ ​

​

x ​,x ​1 2
min

s. t. 

f(x ​,x ​)1 2

x ​ = arg ​ ϕ(x ​,x ​)2
x ​2

min 1 2
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Disjunctive constraints
A number of affine constraints combined with  and 
logical operators.

∨ ∧

where

where

T ​ ∨1 T ​ ∨2 … ∨ T ​,m

T ​ =i T ​ ∧i1 T ​ ∧i1 … ∧ T ​,in ​i

T ​ =ij c ​x +ij d ​ ∈ij D ​.ij 13Hybrid systems (B3M35HYS) Fall 2023



Software for solving complementarity
problems
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PATH solver .

Julia (JuMP package)

Matlab

Optimization Toolbox for Matlab: fmincon can only
handle it as a general nonlinear constraint  .

.

.

YALMIP: through the command : F = 
complements(w >= 0, z >= 0).

https://pages.cs.wisc.edu/~ferris/path.html

  julia> @variable(model, x >= 0)
  x

  julia> @constraint(model, 2x - 1 ⟂ x)
  [2 x - 1, x] ∈ MathOptInterface.Complements(2)

g ​(x)g ​(x)1 2

Complementarity constraints in Tomlab

Complementarity constraints in Knitro (Artelys)

complements
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https://tomopt.com/docs/quickguide/quickguide029.php
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https://yalmip.github.io/command/complements/
https://docs.mosek.com/latest/capi/tutorial-djc-optimizer.html


Linear complementarity system (LCS)
Also: Linear dynamical complementarity problem (LDCP).

It extends a classical linear dynamical system with linear
complementarity constraints.

​ ​

(t)ẋ

y(t)

0

= Ax(t) + Bu(t)

= Cx(t) + Du(t)

≤ u(t) ⊥ y(t) ≥ 0.
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Example: Electrical circuit with a
diode as an LCS
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Note the upside-down orientation of the voltage and the
current for the capacitor – we wanted the diode current
identical to the capacitor current.

Following the charge formalism within Lagrangian
modelling, we choose the generalized coordinates as

That this is indeed a sufficient number is obvious, but we
can also check the classical formula 

 .

We can choose the state variables as

q = ​ .[q ​L

q ​C
]

B − N + 1 = 4 −
3 + 1 = 2

[ ]
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The resulting state equations are

The idealized volt-ampere characteristics of the diode is

x = ​ .[i ​L

q ​c
]

​ ​

i ​L
′

q ​C
′

= − ​q ​ − ​u ​

LC

1
C

L

1
D

= i ​ − ​q ​ − ​u ​.L
RC

1
C

R

1
D
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Flipping the axes to get the current as the horizontal axis
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And finally after introducing an auxiliary variable (in fact, the
reverse voltage of the diode)  , we get the
desired dependence

​ =ūD −u ​D
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Example continued: Combining the
state equations with the diode
complementarity constraint
(upon replacing the diode voltage with its reverse  while
using  ), we get

​ūD
i ​ =D i ​C

Hybrid systems (B3M35HYS) Fall 2023



​ ​

i ​L
′

q ​C
′

0

= − ​q ​ + ​ ​

LC

1
C

L

1
ūD

= i ​ − ​q ​ + ​ ​L
RC

1
C

R

1
ūD

≤ q ​ ⊥ ​ ≥ 0.C
′ ūD
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We are not there yet – there is a derivative in the
complementarity constraint. But just substitute for it:

and voila, we finally got the LCS description.

We can also reformat it into the vector format

​ ​

i ​L
′

q ​C
′

0

= − q ​ + ​ ​

LC

1
C

L

1
ūD

= i ​ − ​q ​ + ​ ​L
RC

1
C

R

1
ūD

≤ i ​ − ​q ​ + ​ ​ ⊥ ​ ≥ 0.L
RC

1
C

R

1
ūD ūD

[i′ ] [0 1 ] [i ] [ 1 ]
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Mass-spring system with a hard stop
as a linear complementarity system
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Two carts moving horitontally (left or right) interconnected
through a spring.

The left cart also interconnected with the wall through a
another spring.

Furthemore, the motion of the left cart is constrained in that
there is a hard stop that prevents the cart from moving
further to the left.

The variables  and  give deviations of the two carts
from their equilibrium positions. The hard stop is located at
such equilibrium position of the left cart.

Besides the two positions, their derivatives are also
introduced as state vectors.

The input corresponds to the reaction force of the hard

x ​1 x ​2

u
Hybrid systems (B3M35HYS) Fall 2023



The input  corresponds to the reaction force of the hard
stop.

As the output, only the position of the left cart is (arbitrarily)
chosen.

u

​ ​

​(t)ẋ1

​(t)ẋ2

​(t)ẋ3

​(t)ẋ4

y(t)

= x ​3

= x ​4

= −
​x ​

(t) +
​x ​

(t) +
​
u(t)

m ​1

k ​ + k ​1 2
1

m ​1

k ​2
2

m ​1

1

= ​x ​(t) − ​x ​(t)
m ​2

k ​2
1

m ​2

k ​2
2

= x ​(t)1
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The presence of the hard stop can be modelled as an
inequality constraint on the state (or the output in this case)

Strictly speaking, similar constraint should also be imposed
on the right cart. That one can not overcome the hard stop
either. Furthermore, the left cart would stand in the way too.
But we ignore it here.

The reaction force  can only be nonnegative

Furthermore, the reaction force is acting if and only if the left
cart hits the hard stop that is

x ​(t) =1 y(t) ≥ 0.

u

u(t) ≥ 0.
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cart hits the hard stop, that is,

All the above three constraints can be written compactly as
a complementarity constraing

y(t)u(t) = 0.

0 ≤ y(t) ⊥ u(t) ≥ 0.
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Complementarity system as a
feedback interconnection
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Complementarity systems vs PWA and
max-plus linear systems

y = y −+ y , 0 ≤− y ⊥y ≥+ − 0.Hybrid systems (B3M35HYS) Fall 2023



Set

then

max(y, 0) = max(y −+ y , 0) =− y .+

y =+ u

y = u − y y =− − u − y
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More complicated PWA functions in
feedback

u(y) = k ​ max(y −1 y ​, 0) =1 max(k ​(y −1 y ​), 0)1
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Some more segments
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​ ​

u(y) = k ​y + u ​ + (k ​ − k ​) max(y − y ​, 0)0 0 1 0 1

+ (k ​ − k ​) max(y − y ​, 0)2 1 2

= k ​y + u ​ + ​0 0

u ​1

​max((k ​ − k ​)(y − y ​), 0)1 0 1

+ ​

u ​2

​max((k ​ − k ​)(y − y ​), 0)2 1 2
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Simulation using time-stepping

​ ​

​ẋ1

​ẋ2

= − signx ​ + 2 signx ​1 2

= −2 signx ​ − signx ​1 2
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Example continued: how fast does the
solution approach the origin?
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Let’s use the 1-norm  to measure how
far the trajectory is from the origin.

How fast does the trajectory converge to the origin? That, is

Consider each quadrant separately. Let’s start in the first
(upper right) quadrant, that is,  and , and
therefore , and therefore

∥x∥ ​ =1 ∣x ​∣ +1 ∣x ​∣2

​ ∥x∥ ​ =
dt
d

1 ?

x ​ >1 0 x ​ >2 0
∣x ​∣ =1 x ​, ∣x ​∣ =1 2 x ​2

∥x∥ ​ =
dt
d

1 ​ +ẋ1 ​ =ẋ2 1 − 3 = −2.
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Id ti l i th th d t A d d fi d thForward Euler with fixed step size

​ ​

x ​1,k+1

x ​2,k+1

= x ​ + h(− signx ​ + 2 signx ​)1,k 1,k 2,k

= x ​ + h(−2 signx ​ − signx ​)1,k 1,k 2,k

Hybrid systems (B3M35HYS) Fall 2023



25Hybrid systems (B3M35HYS) Fall 2023



Backward Euler

​ ​

x ​1,k+1

x ​2,k+1

= x ​ + h(− signx ​ + 2 signx ​)1,k 1,k+1 2,k+1

= x ​ + h(−2 signx ​ − signx ​)1,k 1,k+1 2,k+1

26Hybrid systems (B3M35HYS) Fall 2023



Formulation using LCP
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Instead solving the above nasty equations, introduce new
variables  and  as the outcomes of the  functions:

But now we have to enforce the relation between  and
.

Recall the standard definition of the  function:

u ​1 u ​2 sign

​ ​

x ​1,k+1

x ​2,k+1

= x ​ + h(−u ​ + 2u ​)1,k 1 2

= x ​ + h(−2u ​ − u ​)1,k 1 2

u

x ​k+1

sign

sign(x) = ​ ​ ​⎩⎨
⎧1

0
−1

x > 0
x = 0
x < 0
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Change the definition to a set-valued function

Accordingly, set the relation between  and 

⎩ 1 x < 0

​ ​ ​⎩⎨
⎧sign(x) = 1

sign(x) ∈ [−1, 1]
sign(x) = −1

x > 0
x = 0
x < 0

u x

​ ​ ​⎩⎨
⎧u ​ = 11

u ​ ∈ [−1, 1]1

u ​ = −11

x ​ > 01

x ​ = 01

x ​ < 01
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and

But these are mixed complementarity contraints!

​ ​ ​⎩⎨
⎧u ​ = 12

u ​ ∈ [−1, 1]2

u ​ = −12

x ​ > 02

x ​ = 02

x ​ < 02

​ ​

​[x ​1,k+1

x ​1,k+1
]

−1 ≤ u ​ ≤ 11

−1 ≤ u ​ ≤ 12

= ​ + h ​ ​ ​[x ​1,k

x ​2,k
] [−1

−2
2

−1
] [u ​1

u ​2
]

⊥ − x ​1,k+1

⊥ − x ​2,k+1
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9 possible combinations
Let’s explore some: , while 

 and :
x ​ =1,k+1 x ​ =2,k+1 0 u ​ ∈1

[−1, 1] u ​ ∈2 [−1, 1]

​ ​

​[0
0

] = ​ + h ​ ​ ​[x ​1,k

x ​2,k
] [−1

−2
2

−1
] [u ​1

u ​2
]

− 1 ≤ u ​ ≤ 1, −1 ≤ u ​ ≤ 11 2
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How does the set of states from which the next state is zero
look like?

​ ​

− ​ ​ ​[−1
−2

2
−1

]−1 [x ​1,k

x ​2,k
]

−1 ≤ u ​ ≤ 1, −11

= h ​[u ​1

u ​2
]

≤ u ​ ≤ 12

For 

​ ≤[−h

−h
] ​ ​ ​ ≤[ 0.2

−0.4
0.4
0.2

] [x ​1,k

x ​2,k
] ​[h

h
]

h = 0.2
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Indeed, if the current state is in this rotated square, then the
next state will be zero.
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Another
, :u ​ =1 1 u ​ =2 1

​ ​

​[x ​1,k+1

x ​1,k+1
]

x ​1,k+1

x ​2,k+1

= ​ + h ​ ​ ​[x ​1,k

x ​2,k
] [−1

−2
2

−1
] [1

1
]

≥ 0

≥ 0
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which can be reformatted to

and further to

​ +[x ​1,k

x ​2,k
] h ​ ​ ​ ≥[−1

−2
2

−1
] [1

1
] 0

​ ≥[x ​1,k

x ​2,k
] h ​[−1

3
]
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All nine regions
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Solutions using a MCP solver
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SW for modeling and simulation
based on complementarity
constraints

SICONOS: 

C++, Python

physical domain independent

PINOCCHIO: 

C++, Python

specialized for robotics

https://nonsmooth.gricad-pages.univ-grenoble-
alpes.fr/siconos/

https://stack-of-tasks.github.io/pinocchio/
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