
Algorithms for optimization
Finding derivatives, unconstrained and constrained optimization

Zdeněk Hurák

Department of Control Engineering, Faculty of Electrical Engineering,
Czech Technical University in Prague

March 2, 2021



Derivatives, gradients, Hessians

If possible, we want to use them (why shouldn’t it be possible?).

How to compute them?
• symbolically
• numerically (finite difference, FD)
• algorithmic (also automatic) differentiation (AD)



Sometimes symbolic differentiation not available/usable

Why?



Finite difference (FD) computation of derivatives

df (x)
dx

≈ f (x + α)− f (x)

α
forward difference

or

df (x)
dx

≈ f (x)− f (x − α)
α

backward difference

or

df (x)
dx

≈
f (x + α

2 )− f (x − α
2 )

α
central difference



Troubles with FD?



Algorithmic (also automatic) differentiation (AD)

Systematic application of chain rule for derivatives of composed
functions.
How does it differ from symbolic and how from numerical
differentiation?
Two versions: forward and reverse AD.



Implementation of forward AD using dual numbers

Similar to complex numbers, a dual number has two components:

x = v + dε, ε2 = 0

Multiplication of two dual numbers y = x1 · x2

x = (v1 + d1ε) · (v2 + d2ε)

= v1v2 + (v1d2 + d1v2)ε



Implementations of AD in various languages

Matlab: recently added to Optimization Toolbox for Matlab,
CasADi, MAD (MatlabAD) from Tomlab, . . .

Python: CasADi, . . .
Julia: ForwardDiff.jl, ReverseDiff, Zygote.jl, . . .



Unconstrained optimization

• descent direction methods
• trust region methods



Descent direction methods

• finding a descent direction
• line search

xk+1 = xk + αkdk



Descent direction

Directional derivative negative

∇f (xk)Tdk < 0

But beware of higher order terms – descent direction condition
valid only in some vicinity of x.



Steepest descent (aka gradient) method

dk = −∇f (xk)

xk+1 = xk − αk∇f (xk)



Line search

1 fixed step
2 exact search
3 approximate search



Fixed step

L-smoothness (Lipschitz continuity of the gradient)

‖∇f (x)−∇f (y)‖ ≤ L‖x − y‖
If second derivative exists, L is an upper bound

‖∇2f ‖ ≤ L

For quadratic functions

L = maxλi (Q)

Quadratic dominance (descent lemma)

f (xk+1) ≤ f (xk) +∇f (xk)T(xk−1 − xk) +
L

2
‖xk−1 − xk‖2

Step length

α =
1
L



Exact line search

Several methods (bisection, golden section, Newton, . . . )
For quadratic functions f (x) = 1

2x
TQx+ cTx closed-form formula.

minimize
αk

f (xk + αkdk)

f (xk + αkdk) =
1
2
(xk + αkdk)TQ(xk + αkdk) + cT(xk + αkdk)

=
1
2
xT
kQxk + dT

kQxkαk +
1
2
dT
kQdkα

2
k + cT(xk + αkdk)

df (xk + αkdk)
dαk

= dT
k (Qxk + c) + dT

kQdkαk = 0

αk = −
dT
k (Qxk + c)
dT
kQdk

= −
dT
k∇f (xk)
dT
kQdk



Approximate line search – backtracking

Usually the exact minimum not needed, sufficient descent is
enough.

Armijo / Wolfe conditions.

Backtracking algorithm: parameters s, β ∈ (0, 1), γ ∈ (0, 1):
Set αk = s
While

f (xk)− f (xk + αkdk) < −γαkdT∇f (xk),

set
αk = βαk .



When to stop the iterations?



Gradient method through examples



Scaled gradient method for ill-conditioned problems

minimize
x∈R2

xTQx,

where the matrix Q is

Q =

[
1000 20
20 1

]
.



Conditioning of a matrix

Condition number κ for a given matrix A is

κ(A) = ‖A−1‖ · ‖A‖.

It can be computed as ratio of the largest and smallest singular
values, that is,

κ(A) =
σmax(A)
σmin(A)

.

Ideally should be around 1.
In the example above is well above 1000.



Scaling to improve the conditioning and the convergence

Introduce new variable variable y

x = Sy,

The optimization cost changes f (Sy). Relabel it to g(y).
Chain rule

∇g(y) = ST∇f (Sy).

Steepest descent iterations then change accordingly

yk+1 = yk − αk∇g(yk)
yk+1 = yk − αkST∇f (Syk)

Syk+1︸ ︷︷ ︸
xk+1

= Syk︸︷︷︸
xk

−αk SST︸︷︷︸
D

∇f (Syk︸︷︷︸
xk

)

Defining the scaling matrix D as SST , a single iteration changes to

xk+1 = xk − αkDk∇f (xk).



How to choose the scaling matrix?

Make the Hessian matrix ∇2f (Sy) (the matrix Q above) better
conditioned. Ideally, ∇2f (Sy) ≈ I.
Chain rule once again

∇2g(y) = ST∇2f (Sy)S

= D
1
2∇2f D

1
2

A simple way using a diagonal scaling matrix D

Dii = [∇2f (xk)]−1
ii .



Newton’s method for solving eqautions

Solve
g(x) = 0.

Approximate g at xk using a linear function

g(xk+1)︸ ︷︷ ︸
0

= g(xk) + g ′(xk)(xk+1 − xk)

0 = g(xk) + g ′(xk)xk+1 − g ′(xk)xk),

from which the famous formula follows

xk+1 = xk −
g(xk)

g ′(xk)
.

In the vector case

xk+1 = xk − J(xk)−1g(xk).



Newton’s method for optimization

minimize
x∈R

f (x)

Model the function f at xk using a quadratic function mk(x)

mk(x) = f (xk) + f ′(xk)(x − xk) +
1
2
f ′′(xk)(x − xk)

2.

At the k-th iteration

minimize
xk+1∈R

m(xk+1)

Straightforward: find the value of xk+1 for which the derivative of
mk() vanishes.

xk+1 = xk −
f ′(xk)

f ′′(xk)
.

Full vector version

xk+1 = xk − (∇2f (xk))−1∇f (xk).



Discussion of Newton’s method



Damped Newton’s method

xk+1 = xk − αk∇2f (xk)−1∇f (xk).



Quasi-Newton method

Generalization of the (scalar) secant method.
Secant approximation of the derivative (for rootfinding)

ḟ (xk) ≈
f (xk)− f (xk−1)

xk − xk−1

xk+1 = xk −
xk − xk−1

f (xk)− f (xk−1)︸ ︷︷ ︸
≈ḟ (xk )

f (xk)

Secant approximation of the derivative (for optimization)

f̈ (xk) ≈
ḟ (xk)− ḟ (xk−1)

xk − xk−1
=: bk

bk(xk − xk−1︸ ︷︷ ︸
sk−1

) = ḟ (xk)− ḟ (xk−1)︸ ︷︷ ︸
yk−1

secant condition



BFGS Quasi-Newton method

Secand condition in the vector case

Bk+1sk = yk

Bk is a matrix with Hessian-like properties

Bk = BT
k

Bk � 0

How to get it? Updates.

Bk+1 = Bk + some “small” update

Possibly updating B−1
k+1 directly. One popular update is BFGS:

Hk+1 = Hk +

(
1+

yT
k Hkyk
sTk yk

)
·
sksTk
sTk yk

−
skyT

k Hk + HkyksTk
yT
k sk



Trust region methods

Approximate f () at xk with some model mk(), typically a quadratic
function

mk(p) = f (xk) +∇f (xk)Tp+
1
2
pT∇2f (xk)︸ ︷︷ ︸

or≈

p

but trust the model only within

‖p‖2 ≤ δ

minimize
p∈Rn

mk(p)

subject to ‖p‖2 ≤ δ



Evaluating the predictive performance of the model

and shrinking or expanding the trust region. Use

η =
actual improvement

predicted improvement
=

f (xk)− f (xk+1)

f (xk)−mk(xk+1)

Shrink for small η (≈ 0) and expand for larger η (≈ 1).



Constrained optimization



Projected gradient method


	Algorithmic differentiation
	Numerical differentiation

	Unconstrained optimization
	Descent direction methods
	Trust region methods

	Constrained optimization

